• Title/Summary/Keyword: X-ray 시스템

Search Result 499, Processing Time 0.024 seconds

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Identification of Active Agents for Reductive Dechlorination in Cement/Fe(II) Systems (시멘트와 Fe(II)을 이용한 환원성 탈염소화반응의 유효반응성분 규명)

  • Kim, Hong-Seok;Lee, Yu-Jung;Kim, Ha-Yan;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.35-42
    • /
    • 2006
  • Experimental study was conducted to identify the active agent for reductive dechlorination of TCE in cement/Fe(II) systems. Several potential materials-hematite (${\alpha}-Fe_2O_3$), lepidocrocite (${\gamma}$-FeOOH), akaganeite (${\beta}$-FeOOH), ettringite ($Ca_6Al_2(SO_4)_3(OH)_{12}$)-that are cement components or parts of cement hydrates were tested if they could act as reducing agents by conducting TCE degradation experiments. From the initial degradation experiments, hematite was selected as a potential active agent. The pseudo-first-order degradation rate constant ($k\;=\;0.637\;day^{-1}$) for the system containing 200 mM Fe(II), hematite and CaO was close to that ($k\;=\;0.645\;day^{-1}$) obtained from the system containing cement and 200 mM Fe(II). CaO, which was originally added to simulate pH of the cement/Fe(II) system, was found to play an important role in degradation reactions. The reactivity of the hematite/CaO/Fe(II) system initially increased with increase of CaO dosage. However, the tendency declined in the higher CaO dosage region, implying a saturation type of behavior. The SEM analysis revealed that the hexagonal plane-shaped crystals were formed during the reaction with increasing degradation efficiency, which was brought about by increasing the CaO dosage. It was suspected that the crystals could be portlandite or green rust ($SO_4$) or Friedel's salt. The XRD analysis of the same sample identified the peaks of hematite, magnetite/maghemite, green rust ($SO_4$). Either instrumental analysis predicted the presence of the green rust ($SO_4$). Therefore, the green rust ($SO_4$) would potentially be a reactive agent for reductive dechlorination in cement/Fe(II) systems.

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.

A Base Study on the Constancy Quality Control Test and Clause of Diagnosis Radiation Equipment (진단용 방사선 발생장치의 수시 정도관리 항목 및 기준에 관한 기초 연구)

  • Heo, Yeji;Kim, Kyotae;Noh, Sicheul;Nam, Sanghee;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.105-110
    • /
    • 2014
  • Diagnostic radiation equipment diagnosis and treatment of disease of recent plays a central role, but this is based on the assumption of an appropriate balance of benefits and risks of diagnostic. If balance is not maintained has the potential to give an adverse effect on the health of the public. In the case of an overseas, the importance of (QA) quality assurance of medical equipment is growing, but evaluation criteria of quality assurance has not been clearly presented in domestic. Therefore, the modernization of medical equipment from the point at which the degree of cycle-by-cycle management system of foreign national to be suitable for diagnostic radiation generator entry and quality control standards by introducing a tailoring is necessary. In this study the most frequently used diagnostic radiation generator X-ray imaging apparatus of the general three-year periodic inspections at any time between the periodic inspection items and quality control methods and standards for the establishment of the United States, Canada and abroad, and international electronic literature search Technical Committee (International Electro-technical Commission, IEC) were compared with the provisions of item. Based on the national quality control items when opening frequent inspection items and standards presented as a basis for setting up study.

Effect of the Viscosity of (Hydroxypropyl)methyl Cellulose on Dissolution Rate of Alfuzosin-HCl Granule Tablet (HPMC의 점도에 따른 염산 알푸조신 과립정제의 용출률 조절)

  • Kim, Won;Song, Byung-Joo;Kim, Dae-Sung;Kim, Su-Jin;Lee, Seon-Kyoung;Kim, Hye-Lin;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.269-273
    • /
    • 2010
  • The primary objective of this work is to find the optimal condition for the granule tablet formulation of alfuzosin-HCl that aims to achieve a sustained drug release. (Hydroxypropyl)methyl cellulose (HPMC) is one of the most widely used polymer as a drug formulation and therefore has been utilized in this study as an excipient. Alfuzosin-HCl granule tablet was developed using the various viscosities of HPMC and the effects of viscosity on drug release was investigated. Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were employed to investigate the chemical structure and crystallization of alfuzosin-HCl in the formulation. We prepared the granule tablet by a direct compression method and studied the release profile in the stimulated intestinal fluid (pH 6.8). As the viscosity of HPMC increased the release of alfuzosin-HCl decreased, demonstrating that controlled release of alfuzosin-HCl can be achieved by varying the viscosity of HPMC.

Research on Dose Reduction During Computed Tomography Scanning by CARE kV System and Bismuth (전산화 단층검사 시 Bismuth와 CARE kV System을 이용한 선량 저감화에 대한 연구)

  • Kwak, Yeong-Gon;Kim, Chong-Yeal;Jeong, Seong-Pyo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.233-242
    • /
    • 2014
  • The purpose of this study is to compare the reduction of the dose radioactivity by CARE kV with that of the Bismuth shielding. First, CT was performed with transparent materials, including a Bismuth shielder which is a well-known material for decreasing the dose of radiation. Moreover, we have estimated and compared the affects of the reduction of dose on eye lens, thyroid, breast and genitals. These steps aim to compare reactions with and without the application of the Rando phantom with PLD as well as with CARE kV or not. As a result, during the Brain angio scan, the dose of CARE kV set inspection test methods showed the least dose. Depending on whether we use CARE kV, which showed the effect of dose reduction by 63%. During the Carotid angio scan, the dose was increased by 13% by how to set CARE kV+Bismuth. During the Cardiac angio scan, which showed the effect of dose reduction by 31% by how to set CARE kV+Bismuth. During the Lower extremity angio scan, the dose was measured least by how to set up the whole Bismuth. Compared with CARE kV set of test methods, which showed the effect of dose reduction by 9%.

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

Spectroscopic Identifications and Phase Equilibria of THF + 3-OH THF + CH4 Clathrate Hydrates (삼성분계 THF + 3-OH THF + CH4 크러스레이트 하이드레이트의 상평형 거동 해석 및 분광학적 분석)

  • Kim, Heejoong;Ahn, Yun-Ho;Moon, Seokyoon;Hong, Sujin;Park, Youngjune
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.353-357
    • /
    • 2017
  • In this study, the inclusion phenomena of tetrahydrofuran + 3-hydroxytetrahydrofuran + $CH_4$ clathrate hydrates were explored via thermodynamic and spectroscopic approaches. The phase equilibria of the double hydrates - THF + $CH_4$ and 3-OH THF + $CH_4$ clathrate hydrates - were determined by pressure-temperature trace during hydrate formation and dissociation, and the result revealed that the equilibrium pressures were shifted to lower pressure region compared to pure $CH_4$ hydrate. The powder X-ray diffraction patterns revealed that the double hydrates of THF + 3-OH THF formed structure II type clathrate hydrates with $CH_4$. The dispersive Raman spectra of the double clathrate hydrates also exhibited that $CH_4$ can be trapped in both $5^{12}6^4$ and $5^{12}$ cages whereas THF and 3-OH THF were encaged in $5^{12}6^4$ cage.

Analysis on infection control of general hospital radiology (종합병원 영상의학과의 감염관리 대한 분석)

  • Shin, Jung-Sub;Park, Cheol-Woo;Jeon, Byeong-Kyou
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.335-342
    • /
    • 2012
  • This study aims to find a way to control infection of community radiology effectively by calculating the degree of contamination, culture and identifying the flora in radiology of five general hospitals in Gyeongsangbuk-do. Staphylococcus, Micrococcus, Pseudomonas stutzeri, Pseudomonas oryzihabitans were identified as surface flora. These are know to be pathogens of hospital acquired infection and there was no radiology-specific flora. Research subject hospitals were conducting similar infection control education but degree of contamination of each hospital showed significant difference. Difference in degree of contamination according to contact sources were analyzed by Contact sources were classified into technologist-using, patients-using and common-using materials. Analysis of each hospital's degree of contamination showed that patient-using materials were significantly more contaminated than technologist-using and common-using materials (p<0.001). Devices which are similar to each other in monthly average frequency of use showed no significant difference in degree of contamination, but general X-ray devices and chest boards which are used most frequently showed higher degree of contamination than others. In addition, hospital A, B and C which have heavier monthly average caseload showed relatively high degree of contamination on irradiation devices which are used by technologists only or by technologists and patients commonly, office desks and doorpulls. Hence it is considered that intensity of infection control education should be different according to the degree of monthly average caseload. This study provided an opportunity to aware that technologists' feeling of contamination is crucial for infection control of radiology, and the Accupoint ATP public hygiene monitoring system which was used in this study for measuring the degree of contamination was proved to be an effective measuring device for hospital acquired infection management.