• Title/Summary/Keyword: X-plane simulator

Search Result 14, Processing Time 0.03 seconds

Modeling of QIROV Considering Motion on the X - Y Plane (X - Y 평면상의 운동만을 고려한 소형 잠수정의 모델링)

  • Yim, Jang-Soon;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1821-1822
    • /
    • 2008
  • This paper presents modeling of QIROV's motion on the X-Y plane. Modeling covered the dynamics of a ROV equiped with two trusters at tail, and it started with reconstructing the forces of X, Y and toque from two trusters' forces. The simulator built based on the modeling using Visual C under MS Windows XP.

  • PDF

A Study on Verify of UAV Flight Control Software Simulated Flight using Model-Based Development and X-Plane simulator (모델기반 개발기법과 X-plane을 이용한 무인항공기 비행제어 프로그램 모의비행 검증)

  • Han, Dong-In;Kim, Young-Sik;Lee, Chang-Yong;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • This paper shows the design of operational flight program(OFP) using model-based design(MBD) method which is used in various engineering fields to reduce time and flight risks for development. The verification of OFP for DO-178C guidelines carry out by a model advisor function of simulink. The flight control logic on simulink is converted into C-language by auto code generation tool from, then it is implemented on 32bit digital signal processor(DSP). The verifications of flight control algorithm on various weather conditions are performed by the HILS system with Flight simulator program, X-plane.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

Pose Estimation of Leader Aircraft for Vision-based Formation Flight (영상기반 편대비행을 위한 선도기 자세예측 알고리즘)

  • Heo, Jin-Woo;Kim, Jeong-Ho;Han, Dong-In;Lee, Dae-Woo;Cho, Kyeum-Rae;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.532-538
    • /
    • 2013
  • This paper describes a vision-based only attitude estimation technique for the leader in the formation flight. The feature points in image obtained from the X-PLANE simulator are extracted by the SURF(Speed Up Robust Features) algorithm. We use POSIT(Pose from Orthography and Scaling with Iteration) algorithm to estimate attitude. Finally we verify that attitude estimation using vision only can yield small estimated error of $1.1{\sim}1.76^{\circ}$.

The Aircraft-level Simulation Environment for Functional Verification of the Air Data Computer (대기자료 컴퓨터 (Air Data Computer) 기능검증을 위한 항공기 수준의 시뮬레이션 환경)

  • Lee, Dong-Woo;Lee, Jae-Yong;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In recent years, model-based design techniques have been used as a way to support cost reduction and safety certification in the development of avionics systems. In order to support performance analysis and safety analysis of aircraft and avionics equipment (item) using model based design, we developed a multi-domain simulation environment that inter-works with heterogeneous simulators. We present a multi-domain simulation environment that can verify air data computers and integrated multi-function probes at the aircraft level. The model was developed by Simulink and the flight simulator X-Plane 10 was used to verify the model at the aircraft level. Avionics model functions were tested at the aircraft level and the air data errors of the model and flight simulator were measured within 0.1%.

Scan Element Pattern and Scan Impedance of Open-Ended Waveguide Away Antenna (개방형 도파관 배열 안테나의 조향 소자 패턴 및 조향 임피던스에 관한 연구)

  • Yu, Je-Woo;Rah, Dong-Kyoon;Kim, Dong-Seok;Kim, Chan-Hong;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.7-14
    • /
    • 2007
  • In this paper, the scan characteristics of phased array antenna consisted of rectangular open-ended waveguide with a triangular grid are investigated. An infinite array structure is analyzed by numerically solving the integral equation for the electric field over the waveguide aperture using waveguide mode function and Floquet mode function. Next, SEP(Scan Element Pattern) and SI(Scan Impedance) characteristics are simulated by CST's MWS(Microwave Studio) and Ansoft's HFSS(High Frequency Structure Simulator) for the finite and infinite array structures. Also, validity of these approaches is verified by comparing the calculated and simulated results with the measured ones for an $8{\times}8$ subarray. Within 10.5 % fractional bandwidth in the X-band, the fabricated subarray showed the flat gain characteristic in the scan range of ${\pm}45^{\circ}C$ in the E-plane(azimuth) and ${\pm}20^{\circ}C$ in the H-plane(elevation), and also showed the return loss characteristic of less than -10 dB.

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

A new DPCM-based transmission scheme for flight data (차분펄스부호변조방식에 기반한 새로운 비행데이터 전송 기법)

  • Kang, Min-Woo;Moon, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.149-157
    • /
    • 2011
  • In this paper, we propose a new DPCM-based transmission scheme for flight data. The amount of the flight data from LRU to MC has been increased due to the emergence and development of avionics systems and functions. It becomes a serious issue for satisfying the hard real-time processing required in the MC. In order to solve this problem, we observed the flight data produced by X-Plane simulator and discovered that the most flight data are moderately varied during flight. Based on this fact, a new data format is suggested by modifying that of ARINC-429 protocol in this paper. And the different value of the flight data is transmitted in the proposed scheme. The simulation results show that the proposed scheme achieves 20% data transfer gain compared to the ARINC-429 based transmission method.

Design of an Autonomous Air Combat Guidance Law using a Virtual Pursuit Point for UCAV (무인전투기를 위한 가상 추적점 기반 자율 공중 교전 유도 법칙 설계)

  • You, Dong-Il;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.199-212
    • /
    • 2014
  • This paper describes an autonomous air combat guidance law using a Virtual Pursuit Point (VPP) in one-on-one close engagement for Unmanned Combat Aerial Vehicle (UCAV). The VPPs that consist of virtual lag and lead points are introduced to carry out tactical combat maneuvers. The VPPs are generated based on fighter's aerodynamic performance and Basic Fighter Maneuver (BFM)'s turn circle, total energy and weapon characteristics. The UCAV determines a single VPP and executes pursuit maneuvers based on a smoothing function which evaluates probabilities of the pursuit types for switching maneuvers with given combat states. The proposed law is demonstrated by high-fidelity real-time combat simulation using commercial fighter model and X-Plane simulator.

Monocular Vision-Based Guidance and Control for a Formation Flight

  • Cheon, Bong-kyu;Kim, Jeong-ho;Min, Chan-oh;Han, Dong-in;Cho, Kyeum-rae;Lee, Dae-woo;Seong, kie-jeong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.581-589
    • /
    • 2015
  • This paper describes a monocular vision-based formation flight technology using two fixed wing unmanned aerial vehicles. To measuring relative position and attitude of a leader aircraft, a monocular camera installed in the front of the follower aircraft captures an image of the leader, and position and attitude are measured from the image using the KLT feature point tracker and POSIT algorithm. To verify the feasibility of this vision processing algorithm, a field test was performed using two light sports aircraft, and our experimental results show that the proposed monocular vision-based measurement algorithm is feasible. Performance verification for the proposed formation flight technology was carried out using the X-Plane flight simulator. The formation flight simulation system consists of two PCs playing the role of leader and follower. When the leader flies by the command of user, the follower aircraft tracks the leader by designed guidance and a PI control law, and all the information about leader was measured using monocular vision. This simulation shows that guidance using relative attitude information tracks the leader aircraft better than not using attitude information. This simulation shows absolute average errors for the relative position as follows: X-axis: 2.88 m, Y-axis: 2.09 m, and Z-axis: 0.44 m.