• Title/Summary/Keyword: X-Ray structure

Search Result 3,699, Processing Time 0.035 seconds

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF

Conservation and Analysis of Wall Painting Fragments of Goguryeo Possessed by National Museum of Korea (국립중앙박물관 소장 고구려 벽화 편의 보존과 분석)

  • Jo, Yeontae
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.37-60
    • /
    • 2013
  • Conservation and analysis of wall painting Goguryeo was performed to classify the unknown fragments. The conservation naked eye observation, optical microscopy, and infrared examination were carried out in order to figure out the structure, quality of constituting materials, and damages such as cracks, and discolored fragments of colored areas. Based on such investigation, conservation was proceeded. and it was completed with strengthening the weakened pigment layer of wall blocks. In addition tombs where the wall painting fragments were excavated were investigated by making comparison with gelatin dry plates and copies possessed by National Museum of Korea. According to the result, they were Kaemachong, Gosan-ri Tomb No.1 Gamsinchong, and Wonbong-ri Tomb. The components of colors with which Goguryeo wall painting fragments were painted and the mineral pigments of the wall layer were analyzed. Portable µ-XRF spectrometer and X-ray diffractometer were employed. It showed that lime (CaCO3) used for the wall layer, and the brown color is hematite(Fe2O3) and cerusite (PbCO3) and lead oxide(PbO) were identified. In the red color, cinnabar (HgS) were detected.

Liquid Phase Epitaxial Growth of GaAs on InP Substrates (액상에피택시 방법에 의한 InP기판상의 GaAs 이종접합 박막 성장)

  • Kim, Dong-Geun;Lee, Hyeong-Jong;Im, Gi-Yeong;Jang, Seong-Ju;Jang, Seong-Ju;Kim, Jong-Bin;Lee, Byeong-Taek
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.600-607
    • /
    • 1994
  • Optimum exper~mental conditions were established for the growth of heteroepitaxial GaAs layers on InP using liquid phase epitaxy (LPE) technique. Results showed that the optimum growth temperature was $720^{\circ}C$ at a cooling rate of $0.5^{\circ}C$/min. Surface morphology of the grown layers significantly improved by addition of about 0.005wt% Se to the Ga growth melt, which effectively suppressed melt-back of InP substrates into the melt during the initial stage of growth. It was observed that the quality of GaAs layers also improved substantially when the substrates patterned with grating structure were used, as determined by the (400) double crystal X-ray diffraction. The transmission electron microscopy observation indicated t.hat the misfit dislocations interact with each other at the grating region, resulting in a lower dislocation density in the upper GaAs layer.

  • PDF

Precipitation Hardening by Holding After Simulated Complete Firing in a Metal-Ceramic Alloy of Pd-Au-Ag-Sn System (금속-세라믹용 Pd-Au-Ag-Sn계 합금의 모의소성 후 계류에 따른 석출경화)

  • Kim, Min-Jung;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • This experiment was carried out to examine whether the post-firing heat treatment is effective in increasing the hardness of metal-ceramic alloy of the Pd-Au-Ag-Sn system. Precipitation hardening by holding at $600^{\circ}C$ after simulated complete porcelain firing in a metal-ceramic alloy of the Pd-Au-Ag-Sn system was examined by observing the change in hardness, crystal structure, and microstructure using a hardness test, X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The hardness of the alloy increased apparently by holding the specimen at $600^{\circ}C$ for 30 min after simulated complete porcelain firing. The formation of fine grain interior precipitates during holding at $600^{\circ}C$ caused the formation of lattice strain in the grain interior, resulting in apparent hardening. The faster cooling rate (stage 0) during simulated complete porcelain firing resulted in more effective precipitation hardening during holding at $600^{\circ}C$. From the above results, an appropriate post-firing heat treatment, such as holding at $600^{\circ}C$ for 30 min after complete porcelain firing may increase the durability of metal-ceramic prostheses composed of Pd-Au-Ag-Sn alloy.

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).

Scientific Comparison Study on the Joseon Dynasty Palace Roof Tiles and Modern Handmade Roof Tiles

  • Ahn, Kyoung Suk;Lee, Min Hye;Kim, Ji Hye;Ha, Ji Hyang;Jang, Won Jin;Kim, Du Hyeon;Jeong, Ji Youn;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.63-76
    • /
    • 2021
  • The purpose of this study is to scientifically analyze physicochemical characteristics of the roof tiles used for palaces in the Joseon Dynasty which stored in Changdeokgung material storage and Seooreung Jaesil and the modern handmade ones which made by N company to understand the differences between their manufacturing techniques. Through chromaticity, cross-sectional observation, component analysis, and crystal structure analysis, it was possible to confirm the physicochemical properties and fired properties of the roof tile. Roof tiles from the Joseon Dynasty have a wider colorimetric range and higher apparent porosity and water absorption, on average, than the modern roof tiles. The cross section of the Joseon Dynasty roof tiles shows that most clay minerals have not been vitrified, remaining in the form of atypical particles, while the modern roof tiles have denser clay materials. X-ray diffraction analysis identified low-temperature minerals such as micas in Joseon roof tiles but no peak of these minerals was observed in the modern roof tiles, implying that the modern ones are fired at higher temperature than the Joseon ones. Therefore, the modern roof tiles are fired at higher temperature and have higher density than the Joseon ones due to the use of pugmills. The general content of main ingredients was similar between the two. Additionally, the principal component analysis of trace elements in the Joseon roof tiles showed that most samples were from similar areas. It seems that the Joseon roof tiles were manufactured using soils supplied from a specific region at the same timeframe and their consistency in the content of principal components implies that they also have similar mix proportions of clay.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Layered Double Hydroxide Nanoparticles for Bio-Imaging Applications (LDH 나노입자 기반의 바이오 이미징 소재)

  • Jin, Wenji;Ha, Seongjin;Lee, Dongki;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.445-454
    • /
    • 2019
  • Layered double hydroxides (LDHs) nanoparticles have emerged as novel nanomaterials for bio-imaging applications due to its unique layered structure, physicochemical properties, and good biocompatibility. Bio-imaging is one of the most important fields for medical applications in clinical diagnostics and therapeutics of various diseases. Enhanced diagnostic techniques are needed to realize new paradigm for next-generation personalized medicine through nanoscale materials. When nanotechnology is introduced into bio-imaging system, nanoparticle probes can endow imaging techniques with enhanced ability to obtain information about biological system at the molecular level. In this review, we summarize structural features of LDH nanoparticles with current issues of bio-imaging system. LDH nanoparticle probes are also discussed through in vitro as well as in vivo studies in various bio-imaging techniques including fluorescence imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT), which will have the potential in the development of the advanced nanoparticles with high sensitivity and selectivity.

Crystal Structures of Fully Dehydrated Zeolite $Cd_6-A$ and of $Rb_{13.5}-A$, the Product of its Reaction with Rubidium, Containing Cationic Clusters

  • Jang, Se-Bok;Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 1994
  • The crystal structures of $Cd_6-A$ evacuated at $2{\times}10^{-6}$ Torr and 750$^{\circ}$C (a=12.216(l) ${\AA}$), and of the product of its reaction with Rb vapor (a= 12.187(l) ${\AA}$), have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm$\bar{3}$m at 21(l)$^{\circ}$C. Their structures were refined to the final error indices, $R_1$=0.055 and $R_2$=0.067 with 191 reflections, and $R_1$=0.066 and $R_2$=0.049 with 90 reflections, respectively, for which I>3${\sigma}$(I). In dehydrated $Cd_6-A$, six $Cd^{2+}$ ions are found at two different threefold-axis sites near six-oxygen ring centers. Four $Cd^{2+}$ ions are recessed 0.50 ${\AA}$ into the sodalite cavity from the (111) plane at O(3), and the other two extend 0.28 ${\AA}$ into the large cavity from this plane. Treatment at 250 $^{\circ}$C with 0.1 Torr of Rb vapor reduces all $Cd^{2+}$ ions to give $Rb_{13.5^-}$A. Rb species are found at three crystallographic sites: three $Rb^+$ ions lie at eight-oxygen-ring centers, filling that position, and ca. 10.5 $Rb^+$ ions lie on threefold axes, 8.0 in the large cavity and 2.5 in the sodalite cavity. In this structure, ca. 1.5 Rb species more than the 12 $Rb^+$ ions needed to balance the anionic charge of zeolite framework are found, indicating that sorption of $Rb^0$ has occurred. The occupancies observed can be most simply explained by two "unit cell" compositions, $Rb_{12^-}A{\cdot}Rb$ and $Rb_{12^-}A{\cdot}2Rb$, of approximately equal population. In sodalite cavities, $Rb_{12^-}A{\cdot}Rb$ would have a $(Rb_2)^+$ cluster and $Rb_{12^-}A{\cdot}2Rb$ would have a triangular $(Rb_3)^+$ cluster. Each of the atoms of these clusters must bind further through a six-oxygen ring to a large cavity $Rb^+$ to give $(Rb_4)^{3+}$ (linear) and $(Rb_6)^{4+}$ (trigonal). Other unit-cell compositions and other cationic cluster compositions such as $(Rb_8)^{n+}$ may exist.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.