• 제목/요약/키워드: X-Ray diffraction measurement

검색결과 519건 처리시간 0.027초

$CuInSe_2$ 단결정 박막 성장과 광전류 특성 (Properties of Photocurrent and Growth of $CuInSe_2$ single crystal thin film)

  • S.H. You;K.J. Hong
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.83-83
    • /
    • 2003
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.62$\times$10$^{16}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10 K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 7 meV and 5.9 meV, respectivity. By Haynes rule, an activation energy of impurity was 59 meV.

  • PDF

암모니아 역류형태의 반응로를 이용한 GaN 반도체 박막의 성장 (Crystal growth of GaN semiconductor films by counter-flow metal-organic chemical vapor deposition)

  • 김근주;황영훈
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.574-579
    • /
    • 1999
  • 암모니아가스를 역류시키는 수평식 유기금속 화학기상증착장치를 제작하였으며, 유체흐름에 관한 레이놀즈 수 및 열대류에 관한 레일리 수가 각각 4.5와 215.8이 되도록 하여 GaN 박막을 성장하였다. 이러한 특성변수에서 박막을 성장할 경우 비교적 양호한 박막의 결정특성, 전기적 특성 및 광학적 특성을 갖게 함을 확인하였다. 결정 내의 전위밀도는 $2.6{\times}10^8/\textrm {cm}^2$ 정도이었고, Si으로 도핑된 n-GaN 박막의 전자에 의한 운반자 농도와 이동도는 각각 $10^{17}$~$10^{18}/{\textrm}{cm}^3$ 과 200~400$\textrm{cm}^2$/V.sec의 범위를 갖으며 Mg을 도핑하여 후속열처리로 활성화시킨 p-GaN 박막은 정공에 의한 운반자 농도가 $8\times 10^{17}/{\textrm}{cm}^3$ 정도임을 확인하였다.

  • PDF

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • 강명길;홍창우;윤재호;곽지혜;안승규;문종하;김진혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

PLD법으로 증착된 n-ZnO:In/p-Si(111) 이종접합구조의 특성연구 (The study of the characteristic of n-ZnO:In/p-Si(111) heterostructure using Pulsed Laser Deposition)

  • 장보라;이주영;이종훈;김준제;김홍승;이동욱;이원재;조형균;이호성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.355-356
    • /
    • 2008
  • In this work, ZnO films doped with different contents of Indium (0.1at.%, 0.3at.%, 0.6at.%, respectively) were deposited on Si (111) substrate that has 1~20 $\Omega$cm by pulsed laser deposition (PLD) at $600^{\circ}C$ for 30min. The thickness of the films are about 250 nm. The structural, optical and electrical properties of the films were investigated using X-ray Diffraction (XRD), Atomic force microscope (AFM), Photoluminescence (PL) and Hall measurement. It has been found that RMS of the films is decreased and grain size is increased with increasing the contents of doped Indium. The results of the Photoluminescence properties were indicated that the films have UV emission about 380nm and shows a little red shitf with increasing contents of doped indium. The result of the Hall measurement shows that the concentration and resisitivity in doped ZnO are as changing as one order, respectively ${\sim}10^{18}/cm^2$, ${\sim}10^{-2}cm{\Omega}cm$.

  • PDF

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

기판에 따른 BST 박막의 전기적 특성에 관한 연구 (Study on electrical properties of BST thin film with substrates)

  • 이태일;최명률;박인철;김홍배
    • 한국진공학회지
    • /
    • 제11권3호
    • /
    • pp.135-140
    • /
    • 2002
  • 본 논문에서는 p-type (100)Si, (100)MgO 그리고 MgO/si 기판 위에 RF Magnetron sputtering 법으로 $Ba_{0.5}Sr_{0.5}TiO_3$(BST)박막을 증착하였다. BST 박막 증착 후 RTA(Rapid Thermal Annealing)를 이용하여 $600^{\circ}C$에서 산소분위기로 1분간 고온 급속 열처리를 하였다. 증착된 BST박막의 결정화를 조사하기 위해 XRD(X-Ray Diffraction)측정을 한 결과 모든 기판에서 (110) $Ba_{0.5}Sr_{0.5}TiO_3$(의 주피크가 관찰되어졌고, 열처리 후 재결정화에 기인하여 피크 세기가 증가함을 관찰할 수 있었다. Al 전극을 이용한 커패시터 제작 후 측정한 C-V(Capacitance-Voltage) 특성에서 각각의 기판에서 측정된 커패시턴스 값으로 계산된 유전율은 120(bare Si), 305(Mgo/Si) 그리고 310(MgO)이었다. 누설 전류 특성에서는 0.3 MV/cm이내의 인가전계에서 1 $\mu\textrm{A/cm}^2$ 이하의 안정된 값을 보여주었다. 결론적으로 MgO 버퍼층을 이용한 기판이 BST 박막의 증착을 위한 기판으로써 효과적임을 알 수 있었다.

열분석법에 의한 Mg-8.5Li-4.5Al합금의 시효거동 연구 (A Study on the Aging Behavior of a Mg-8.5Li-4.5Al alloy by Differential Scanning Calorimetry)

  • 김영우;황영하;박태원;김도향;홍준표
    • 열처리공학회지
    • /
    • 제10권4호
    • /
    • pp.255-265
    • /
    • 1997
  • Precipitation and strengthening mechanisms in squeeze cast Mg-8.5wt%Li-4.5wt%Al have been investigated by differential scanning calorimetry(DSC), scanning electron microscopy(SEM), in-situ and ex-situ X-ray diffraction analysis and hardness measurement. Special emphasis was placed on the investigation of the precipitation behavior by the DSC technique. Microstructural and calorimetric analysis showed that ${\theta}$ and ${\delta}$ precipitates in the b.c.c. ${\beta}$ phase matrix, forming two exothermic peaks at the temperature ranges of $130^{\circ}C{\sim}180^{\circ}C$ and $236^{\circ}C{\sim}280^{\circ}C$. ${\theta}$ and ${\delta}$ dissolve into the matrix forming an endothermic peak at the temperature range of $280^{\circ}C{\sim}352^{\circ}C$. The as-cast microstructure consists of ${\alpha}$, ${\beta}$ and ${\delta}$. Peak strength was obtained after aging for 1 hour at $50^{\circ}C$. The aging time required for the peak strength decreased as the aging temperature increases. The hardness decrease during overaging was due to the coarsening of ${\theta}$ precipitates. Microhardness measurement showed that variation of the hardness of ${\beta}$ matrix was more pronounced than that of the ${\alpha}$ phase, indicating that the ${\beta}$ phase is more responsible for the strengthening of the Mg-8.5wt%Li-4.5wt%Al alloy.

  • PDF

급성 규폐증이 발생한 규조토 분말 취급 작업장의 결정형 실리카 노출평가: 역학조사 사례 (Exposure Assessment of Crystalline Silica in Diatomite Powder Handling Workplace with Acute Silicosis)

  • 김부욱;김대호;김형렬;최병순
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.271-277
    • /
    • 2019
  • Objectives: A 46-year-old woman who had worked on cleaning stainless steel containers with Initially unknown powders died from acute silicosis. To determine whether the acute silicosis was related to his work environment, we conducted exposure assessment the level of exposure to respirable crystalline silica(RCS) during cleaning stainless steel containers with unknown powders. Methods: The exposure assessment of RCS were undertaken according to the National Institute for Occupational Safety and Health(NIOSH) method 7500. The components of the unknown powder were analyzed using X-ray Diffraction. Results: The unknown powder was found to be natural diatomaceous earth, which contained 12% and 9% quartz and cristobalite, respectively, crystalline silica. In the case of cleaning stainless steel containers with diatomaceous earth powder, the primary measurement resulted in 1.3 times higher occupational exposure limit of MOEL(in sum of quartz and cristobalite concentration) and 3.9 times higher in secondary measurement. The workbench was equipped with a local exhaust system, but because there was no hood at the end of the duct, the wind speed at the opening of the duct was 12 m/sec, whereas the controlled wind speed at the working position was only 0.3 m/sec below the legal standard. Conclusions: There is an urgent need to install the hood, conduct safety and health education for employers and workers, and periodically monitoring and manage the working environment.

Indium-Tin-Oxide 나노입자 인쇄박막의 pH sensor 응용에 대한 연구 (pH Sensor Application of Printed Indium-Tin-Oxide Nanoparticle Films)

  • 이창한;노재하;안상수;이상태;서동민;이문진;장지호
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.85-89
    • /
    • 2022
  • We investigated a pH sensor using an Indium tin oxide (ITO) nanoparticle (NP) film printed on a flexible substrate. First, the printing precision and mechanical stability of the ITO-printed film were investigated. In particular, the factors that influence the crystallinity of ITO films were studied using X-ray diffraction pattern analysis. The response of the ITO pH sensor was calibrated using a series of standard pH solutions (pH 3-11). The pH values of various specimens were measured using an ITO pH sensor, and the results were compared with those of various pH measurement methods. As a result of the experiment, the maximum error was approximately ± 0.04 pH (0.4 %) at pH 9, which indicated that the ITO pH sensor is highly suitable for pH measurement. Finally, we used the ITO pH sensor to the measure of general specimens such as solvents and beverages and compared the results in comparison with those obtained from several conventional methods.

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.