• Title/Summary/Keyword: X-Ray Microtomography

Search Result 50, Processing Time 0.018 seconds

Shaping ability and apical debris extrusion after root canal preparation with rotary or reciprocating instruments: a micro-CT study

  • Emmanuel Joao Nogueira Leal da Silva;Sara Gomes de Moura;Carolina Oliveira de Lima;Ana Flavia Almeida Barbosa;Waleska Florentino Misael;Mariane Floriano Lopes Santos Lacerda;Luciana Moura Sassone
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.16.1-16.11
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the shaping ability of the TruShape and Reciproc Blue systems and the apical extrusion of debris after root canal instrumentation. The ProTaper Universal system was used as a reference for comparison. Materials and Methods: Thirty-three mandibular premolars with a single canal were scanned using micro-computed tomography and were matched into 3 groups (n = 11) according to the instrumentation system: TruShape, Reciproc Blue and ProTaper Universal. The teeth were accessed and mounted in an apparatus with agarose gel, which simulated apical resistance provided by the periapical tissue and enabled the collection of apically extruded debris. During root canal preparation, 2.5% sodium hypochlorite was used as an irrigant. The samples were scanned again after instrumentation. The percentage of unprepared area, removed dentin, and volume of apically extruded debris were analyzed. The data were analyzed using 1-way analysis of variance and the Tukey test for multiple comparisons at a 5% significance level. Results: No significant differences in the percentage of unprepared area were observed among the systems (p > 0.05). ProTaper Universal presented a higher percentage of dentin removal than the TruShape and Reciproc Blue systems (p < 0.05). The systems produced similar volumes of apically extruded debris (p > 0.05). Conclusions: All systems caused apically extruded debris, without any significant differences among them. TruShape, Reciproc Blue, and ProTaper Universal presented similar percentages of unprepared area after root canal instrumentation; however, ProTaper Universal was associated with higher dentin removal than the other systems.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

How image-processing parameters can influence the assessment of dental materials using micro-CT

  • Torres, Fernanda Ferrari Esteves;Jacobs, Reinhilde;EzEldeen, Mostafa;de Faria-Vasconcelos, Karla;Guerreiro-Tanomaru, Juliane Maria;dos Santos, Bernardo Camargo;Tanomaru-Filho, Mario
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • Purpose: The aim of this study was to evaluate the influence of voxel size and different post-processing algorithms on the analysis of dental materials using micro-computed tomography (micro-CT). Materials and Methods: Root-end cavities were prepared in extracted maxillary premolars, filled with mineral trioxide aggregate (MTA), Biodentine, and Intermediate Restorative Material (IRM), and scanned using micro-CT. The volume and porosity of materials were evaluated and compared using voxel sizes of 5, 10, and 20 ㎛, as well as different software tools(post-processing algorithms). The CTAn or MeVisLab/Materialise 3-matic software package was used to perform volume and morphological analyses, and the CTAn or MeVisLab/Amira software was used to evaluate porosity. Data were analyzed using 1-way ANOVA and the Tukey test(P<0.05). Results: Using MeVisLab/Materialise 3-matic, a consistent tendency was observed for volume to increase at larger voxel sizes. CTAn showed higher volumes for MTA and IRM at 20 ㎛. Using CTAn, porosity values decreased as voxel size increased, with statistically significant differences for all materials. MeVisLab/Amira showed a difference for MTA and IRM at 5 ㎛, and for Biodentine at 20 ㎛. Significant differences in volume and porosity were observed in all software packages for Biodentine across all voxel sizes. Conclusion: Some differences in volume and porosity were found according to voxel size, image-processing software, and the radiopacity of the material. Consistent protocols are needed for research evaluating dental materials.

Regenerative capacity of augmented bone in rat calvarial guided bone augmentation model

  • Kubota, Tatsuya;Hasuike, Akira;Ozawa, Yasumasa;Yamamoto, Takanobu;Tsunori, Katsuyoshi;Yamada, Yutaka;Sato, Shuichi
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Purpose: Guided bone regeneration (GBR) is the most widely used technique to regenerate and augment bones. Even though augmented bones (ABs) have been examined histologically in many studies, few studies have been conducted to examine the biological potential of these bones and the healing dynamics following their use. Moreover, whether the bone obtained from the GBR procedure possesses the same functions as the existing autogenous bone is uncertain. In particular, little attention has been paid to the regenerative ability of GBR bone. Therefore, the present study histologically evaluated the regenerative capacity of AB in the occlusive space of a rat guided bone augmentation (GBA) model. Methods: The calvaria of 30 rats were exposed, and plastic caps were placed on the right of the calvaria in 10 of the 30 rats. After a 12-week healing phase, critical-sized calvarial bone defects (diameter: 5.0 mm) were trephined into the dorsal parietal bone on the left of the calvaria. Bone particles were harvested from the AB or the cortical bone (CB) using a bone scraper and transplanted into the critical defects. Results: The newly generated bone at the defects' edge was evaluated using micro-computed tomography (micro-CT) and histological sections. In the micro-CT analysis, the radiopacity in both the augmented and the CB groups remained high throughout the observational period. In the histological analysis, the closure rate of the CB was significantly higher than in the AB group. The numbers of cells positive for runt-related transcription factor 2 (Runx2) and tartrate-resistant acid phosphatase (TRAP) in the AB group were larger than in the CB group. Conclusions: The regenerative capacity of AB in the occlusive space of the rat GBA model was confirmed. Within the limitations of this study, the regenerative ability of the AB particulate transplant was inferior to that of the CB particulate transplant.

The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

  • Kang, Se-Ryong;Bok, Sung-Chul;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.116-127
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods: We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results: SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions: There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses.

Bone regeneration effects of human allogenous bone substitutes: a preliminary study

  • Lee, Deok-Won;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. Methods: Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation. Results: In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups. Conclusions: Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.

Utility of Micro CT in a Murine Model of Bleomycin-Induced Lung Fibrosis (Bleomycin 유도 폐 섬유화 쥐 모델에서 미세 전산화단층촬영의 유용성)

  • Lee, Jae A;Jin, Gong Yong;Bok, Se Mi;Han, Young Min;Park, Seoung Ju;Lee, Yong Chul;Chung, Myung Ja;Youn, Gun Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.5
    • /
    • pp.436-444
    • /
    • 2009
  • Background: Micro computed tomography (CT) is rapidly developing as an imaging tool, especially for mice, which have become the experimental animal of choice for many pulmonary disease studies. We evaluated the usefulness of micro CT for evaluating lung fibrosis in the murine model of bleomycin-induced lung inflammation and fibrosis. Methods: The control mice (n=10) were treated with saline. The murine model of lung fibrosis (n=60) was established by administering bleomycin intra-tracheally. Among the 70 mice, only 20 mice had successful imaging analyses. We analyzed the micro CT and pathological findings and examined the correlation between imaging scoring in micro CT and histological scoring of pulmonary inflammation or fibrosis. Results: The control group showed normal findings on micro CT. The abnormal findings on micro CT performed at 3 weeks after the administration of bleomycin were ground-glass opacity (GGO) and consolidation. At 6 weeks after bleomycin administration, micro CT showed various patterns such as GGO, consolidation, bronchiectasis, small nodules, and reticular opacity. GGO (r=0.84) and consolidation (r=0.69) on micro CT were significantly correlated with histological scoring that reflected pulmonary inflammation (p<0.05). In addition, bronchiectasis (r=0.63) and reticular opacity (r=0.83) on micro CT shown at 6 weeks after bleomycin administration correlated with histological scoring that reflected lung fibrosis (p<0.05). Conclusion: These results suggest that micro CT findings from a murine model of bleomycin-induced lung fibrosis reflect pathologic findings, and micro CT may be useful for predicting bleomycin-induced lung inflammation and fibrosis in mice.

CBCT-based assessment of root canal treatment using micro-CT reference images

  • Lamira, Alessando;Mazzi-Chaves, Jardel Francisco;Nicolielo, Laura Ferreira Pinheiro;Leoni, Graziela Bianchi;Silva-Sousa, Alice Correa;Silva-Sousa, Yara Terezinha Correa;Pauwels, Ruben;Buls, Nico;Jacobs, Reinhilde;Sousa-Neto, Manoel Damiao
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.245-258
    • /
    • 2022
  • Purpose: This study compared the root canal anatomy between cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT) images before and after biomechanical preparation and root canal filling. Materials and Methods: Isthmus-containing mesial roots of mandibular molars(n=14) were scanned by micro-CT and 3 CBCT devices: 3D Accuitomo 170 (ACC), NewTom 5G (N5G) and NewTom VGi evo (NEVO). Two calibrated observers evaluated the images for 2-dimensional quantitative parameters, the presence of debris or root perforation, and filling quality in the root canal and isthmus. The kappa coefficient, analysis of variance, and the Tukey test were used for statistical analyses(α=5%). Results: Substantial intra-observer agreement (κ=0.63) was found between micro-CT and ACC, N5G, and NEVO. Debris detection was difficult using ACC (42.9%), N5G (40.0%), and NEVO (40%), with no agreement between micro-CT and ACC, N5G, and NEVO (0.05<κ<0.12). After biomechanical preparation, 2.4%-4.8% of CBCT images showed root perforation that was absent on micro-CT. The 2D parameters showed satisfactory reproducibility between micro-CT and ACC, N5G, and NEVO (intraclass correlation coefficient: 0.60-0.73). Partially filled isthmuses were observed in 2.9% of the ACC images, 8.8% of the N5G and NEVO images, and 26.5% of the micro-CT images, with no agreement between micro-CT and ACC, and poor agreement between micro-CT and N5G and NEVO. Excellent agreement was found for area, perimeter, and the major and minor diameters, while the roundness measures were satisfactory. Conclusion: CBCT images aided in isthmus detection and classification, but did not allow their classification after biomechanical preparation and root canal filling.

The healing pattern of a 4 mm proximal infrabony defect was not significantly different from a 2 mm defect adjacent to dental implant in a canine mandible

  • An, Min Kuk;Kim, Hyun Ju;Choi, Jin Uk;Kim, Kyoung-Hwa;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.422-434
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate and compare the healing patterns of 2-mm and 4-mm proximal infrabony defects adjacent to dental implants in canine mandibles. Methods: Four male beagles were used. Two groups were created: a 2-mm group (n=4) and a 4-mm group (n=4) depending on the horizontal dimension of proximal infrabony defects adjacent to implants. Bone healing patterns between the 2 groups were evaluated and compared at 8 and 16 weeks using radiographic, histological, histomorphometric, and fluorescent labelling analyses. Results: According to microcomputed tomography, the median bone volume fraction, bone mineral density, and the percentage of radiographic distance from the defect bottom to the most coronal bone-to-implant contact (radio-mcBIC) were 32.9%, 0.6 g/cm3, and 73.7% (8 weeks) and 45.7%, 0.7 g/cm3, and 76.0% (16 weeks) in the 2-mm group and 57.7%, 0.8 g/cm3, and 75.7% (8 weeks) and 50.9%, 0.8 g/cm3, and 74.7% (16 weeks) in the 4-mm group, respectively. According to histomorphometry, the median bone area fraction, mcBIC and the percentage of BIC amounted to 36.7%, 3.4 mm, and 58.4% (8 weeks) and 49.2%, 3.4 mm, and 70.2% (16 weeks) in the 2-mm group and 50.0%, 3.0 mm, and 64.8% (8 weeks) and 55.7%, 3.0 mm, and 69.6% (16 weeks) in the 4-mm group, respectively. No statistically significant differences were found between the groups for any variables (P>0.05). Conclusions: The proximal defects that measured 2 mm and 4 mm showed similar healing patterns at 8 and 16 weeks, and the top of bone formation in the defects was substantially limited to a maximum of 1.6 mm below the implant shoulder in both groups.