• Title/Summary/Keyword: X-Mode Vibration

Search Result 88, Processing Time 0.028 seconds

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

Experimental Investigation on the Equivalent Ring Theory of the Beat (맥놀이의 등가 링 이론에 관한 실험적 검토)

  • Kim, S.H.;Cui, C.X.;Park, H.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1218-1223
    • /
    • 2007
  • In this study, we experimentally investigate the equivalent ring theory for a slightly asymmetric ring. The slightly asymmetric ring has mode pair and frequency pair due to the small asymmetry and this mode pair generates beat in vibration and sound. In this paper, a slightly asymmetric ring is modeled as the equivalent ring, i.e., the assemblage of a symmetric ring and imperfect point masses. The equivalent ring has the same mode pair condition as that of the original asymmetric ring. Effect of the additional mass attachment is investigated by the equivalent ring theory and the result is compared with those of the measurement and the finite element analysis. It is confirmed that the original ring and the equivalent ring show the same change in frequency and mode under the various additional imperfection mass conditions. The equivalent ring theory explains how the asymmetric elements influence the mode characteristics and provides useful information to tune the beat property.

  • PDF

A study on the estimation method of vibration characteristics of marine engines below 7-cylinder based on a test (실험 기반 7기통 이하 선박용 엔진 진동 특성 예측 방법에 관한 고찰)

  • Hwang, Sang-Jae;Kim, Hae-Seung;Kim, Myoung-Soo;Kim, Hyung-Jin;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.59-59
    • /
    • 2011
  • H-mode or X-mode predominates in marine engines according to the number of cylinder. Generally, H-mode noticeably happen in the engine below 7-cylinder and X-mode remarkably happen above 8-cylinder in the engine operating range. Until now, FEA (Finite Element Analysis) of 3D engine model has been mainly used to estimate the engine vibration but it is very time consuming for simulation and difficult to model simplification. Furthermore, the accuracy of simulation shows a marked difference according to modeling method. Therefore it is very difficult to have contentable result from FEA for beginners and laymen. In this paper, the estimation method based on a test has been suggested to solve the difficulty.

  • PDF

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF

Free Vibration Analysis of FIV Test Loop (유체유발진동 시험용 유동루프의 자유진동해석)

  • Lee, K.H.;Kang, H.S.;Song, K.N.;Yoon, K.H.;Choi, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.905-910
    • /
    • 2004
  • Vibration characteristics of the FIV test loop for the Flow-Induced Vibration(FIV) study of a PWR partial(5x5) fuel assembly are investigated by the Finite Element(FE) analysis and the modal test. For the FE analysis, 3-D beam element is used for the pipes and the test section and mass element used for the valves and flanges. The 'U' restrainer stiffness determined by numerical simulation is used for the FE model. The result of the FE analysis is compared with that of the modal test. The higher mode similarity between the test and analysis is observed in a few low modes. After that, the mode similarity reduce as the mode goes high. It is concluded that the first to the third vibration modes are observed at the lower parts of the 6 inches restoring line, followed by a local mode at the test section, and the natural frequencies of the modes are 22.4 Hz, 26.0 Hz, 27.5 Hz and 31.4 Hz.

  • PDF

Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics (적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

A Study on Temperature Stability of PZT Piezoelectric Ceramic Resonators using Length Extensional Vibration (길이진동을 이용하는 PZT계 세라믹 공진자의 온도안정성에 관한 연구)

  • Han, Seong-Hun;Lim, Dae-Kwan;Lee, Gae-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.885-887
    • /
    • 1999
  • The piezoelectric ceramic resonator using length extensional vibration rather than contour extensional vibration in terms of the size is suitable for personal portable communication. In this paper, $Pb(Zr_{x}Ti_{l-x})O_{3}$ + r[wt%]$Cr_{2}O_{3}$ ceramics, x=0.56, 0.53, 0.50 (ie, Zr/Ti ratios = 56 /44, 53/47, 50/50) r=0, 0.3[wt %], were fabricated. Temperature stability of length extensional vibration mode of those specimens was investigated. Both crystal structure with rhombohedral phase in the case of no addition of $Cr_{2}O_{3}$ and crystal structure with morphotrophic phase boundary in case of additions of 0.3[wt %]$Cr_{2}O_{3}$ had the vest temperature stability and improved temperature stability through thermal aging.

  • PDF

Temperature Stability of Length-Extensional Vibration Modes in PZT Ceramics (PZT세라믹스에 있어서 길이진동모드의 온도안정성)

  • 이개명;현덕수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.726-730
    • /
    • 2001
  • Temperature stabilities of dielectric constraints and resonant frequencies of the substrates are very important in piezoelectric ceramics oscillators and filters. In this study, it was investigated temperature stability of the length-extensional vibration mode of Pb(Zr$\_$y/Ti$\_$1-y/)O$_3$+x[wt%]Cr$_2$O$_3$ ceramics. The mode can be utilized in fabricating ultra-small 455 kHz IF devices. Addition of Cr$_2$O$_3$ in morphotrophic phase PZT decreased the variations of dielectric constant, electro-mechanical coupling factor k$\_$31/ and resonant frequency by thermal shock. As additive weight of Cr$_2$O$_3$increased, the temperature coefficient of resonant frequency changed from positive number to negative one. And the composition tith temperature coefficient of resonant frequency was shifted to the one with increased Cr$_2$O$_3$ additive weigh by thermal aging.

  • PDF