• Title/Summary/Keyword: X-Band Transceiver

Search Result 17, Processing Time 0.021 seconds

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

Design And Implementation of X-Band Frequency Synthesizer for Radar Transceiver (Radar Transceiver용 X-밴드 PLL 주파수 합성기 설계 및 제작)

  • Lee, Hyun-Soo;Park, Dong-Kook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • A frequency synthesizer of 10 GHz $\sim$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz $\sim$ 11 GHz, so we lower the frequency to 625 MHz $\sim$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF

Development of X-band frequency synthesizer for radar transceiver (레이더 송수신기용 X 밴드 주파수 합성기 개발)

  • Lee, Hyun-Soo;Park, Dong-Kook;Lee, Su-Tea;Kim, Jin-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.208-209
    • /
    • 2005
  • A frequency synthesizer of 10 GHz ${\sim}$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz ${\sim}$ 11 GHz, so we lower the frequency to 625 MHz ${\sim}$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF

Design and Fabrication of RF Module for 2.4GHz band Wireless Audio/Video Transceiver (2.4GHz 대역 무선 음성/영상 송수신용 RF 모듈 설계 및 제작)

  • 조익현;김정삼;남상민;윤동한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.323-326
    • /
    • 2003
  • 본 논문은 무선 음성/영상 송수신용 RF모듈 설계 및 제작하였다. RF 주파수는 정보통신부에서 고시한 영상전송용 2410, 2430, 3450, 2470MHz 사용하였으며 IF 주파수는 479.5MHz를 사용하였다. 설계 및 제작된 RF 모듈은 FR-4 재질인 유전체 4.6, 두게 0.8mm, 양면구조의 기판을 사용하여 50mm x 40mm 크기로 제작되었다. 설계된 송신기 모듈은 +5V 단일전원으로 9±1dBm의 출력과 주파수허용편차 50×10/sup -6/이하, 스퓨리어스 발사강도 기본주파수의 평균전력보다 40dB이하의 성능을 만족하였다. 수신기 모듈은 +5V 단일 전원으로 -80dBm이하의 수신감도로 만족할만한 성능을 보였다.

  • PDF

Performance Analysis of Smart Antenna Base Station Implemented for CDMA2000 1X (CDMA2000 1X용으로 구현된 스마트 안테나 기지국 시스템의 성능분석)

  • 김성도;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.694-701
    • /
    • 2003
  • In this paper, we present a hardware structure and new features of a smart antenna BTS (Base Transceiver Station) for CDMA2000 1X system. The proposed smart antenna BTS is a composite system consisting of many subsystems, i.e., array antenna element, frequency up/down converters, AD (Analog-to-Digital) and DA (Digital-to-Analog) converters, spreading/despreading units, convolutional encoder/Viterbi decoder, searcher, tracker, beamformer, calibration unit etc. Through the experimental tests, we found that the desired beam-pattern in both uplink and downlink communications is provided through the calibration procedure. Also it has been confirmed that the adaptive beamforming algorithm adopted to our smart antenna BTS is fast and accurate enough to support 4 fingers to each user. In our experiments, commercial mobile terminals operating PCS (Personal Communication System) band have been used. It has been confirmed that the smart antenna BTS tremendously improves the FER (Frame Error Rate) performance compared to the conventional 2-antenna diversity system.

A Design for Solid-State Radar SSPA with Sequential Bias Circuits (순차바이어스를 이용한 반도체 레이더용 SSPA 설계)

  • Koo, Ryung-Seo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2479-2485
    • /
    • 2013
  • In this paper, we present a design for solid-state radar SSPA with sequential bias. We apply to variable extension pulse generator to eliminate signal distortion which is caused by bias rising/falling delay of power amplifier. There is an optimum impedance matching circuit to have high efficiency of GaN-power device by measuring microwave characteristics through load-pull method. The designed SSPA is consisted of pre-amplifier, drive-amplifier and main-amplifier as a three stages to apply for X-Band solid-state radar. Thereby we made a 200W SSPA which has output pulse maximum power shows 53.67dBm and its average power is 52.85dBm. The optimum design of transceiver module for solid-state pulse compression radar which is presented in this dissertation, it can be available to miniaturize and to improve the radar performances through additional research for digital radar from now on.