• 제목/요약/키워드: X -ray Computed

검색결과 787건 처리시간 0.042초

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

3차원 X-ray CT 영상을 이용한 화성암 불균질 지수와 역학적 특성과의 상관관계에 대한 연구 (A Study on Correlation between Heterogeneity Index and Mechanical Properties of Igneous Rocks using 3D X-ray Computed Tomography Image)

  • 정연종;김광염;윤태섭
    • 터널과지하공간
    • /
    • 제27권5호
    • /
    • pp.333-342
    • /
    • 2017
  • 본 연구에서는 국내의 다양한 화성암에 대해 내부구조의 불균질성을 정량화하고, 이와 탄성파속도 및 점하중강도간의 상관관계를 분석하였다. 3차원 X-ray Computed Tomography(CT)를 통해 암석 시편 내부 구조에 대한 정보를 획득하였으며, 3차원 영상에 통계적 기법을 적용하여 뷸균질성 대표계수(representative unit length, LR)를 계산하였다. 또한 암석의 탄성파 속도 및 점하중강도와 LR간의 상관관계로부터 암석의 역학적 특성치를 예측하는 추정식을 제안하였다. 본 연구에서 제안한 방법을 통해 3차원 X-ray 영상에 기반한 내부 특성 분석값을 이용해 실내실험을 수행하지 않고도 암석의 역학적 물성을 평가할 수 있는 간접적인 인자를 도출할 수 있는 가능성을 확인하였다.

Cone beam형 전산화단층영상에서 골의 형태와 밀도의 평가 (Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible)

  • 홍상우;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제38권1호
    • /
    • pp.49-56
    • /
    • 2008
  • Purpose: Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Materials and Methods: Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. Results: The change of inferior border of mandible and anterior border of ramus in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase wasn't reproduced at cone beam computed tomography compared with soft x-ray radiography. Conclusion: CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  • PDF

Computed Radiography에서 고정형 그리드와 이동형 그리드 영상의 인식률 비교 (Stationary and Moving Computed Radiography Grids : Comparative Observer's Perception)

  • 이기호;이창훈;진계환
    • 한국방사선학회논문지
    • /
    • 제9권7호
    • /
    • pp.515-521
    • /
    • 2015
  • 고정형 그리드(stationary grid)에서 그리드 아티팩트(grid artifacts)와 모아레 아티팩트($moir{\acute{e}}$ pattern artifacts)로 인한 영상의 질의 저하와 이동형 그리드(moving grid)에서의 컷 오프 아티팩트(cut off artifacts)로 인한 영상의 질의 저하를 정량적으로 비교 평가하였다. CDRAD 팬텀(Phantom)과 두께 24 cm의 acryl Phantom을 촬영조건(X-ray exposure conditions)을 100 cm, 80 kVp, 30 mA로 하여 고정형 그리드와 이동형그리드에서 영상(X-ray imaging)을 획득하였다. CDRAD Analyser을 이용한 영상(X-ray imaging) 인식률(observer's perception)은 고정그리드에서 평균(mean) 49.36, 표준편차(standard deviation) 3.76, 최대값(max) 55.56, 최소값 38.67이었고 이동형그리드에서 평균 47.04, 편차 12.69, 최대값 55.56, 최소값 20.89이었다. 이동형 그리드보다 고정형 그리드가 인식률의 평균과 표준편차에서 더 우수하게 나타났다.

X-ray Computed Tomography on Larger Diameter Timber than Digital Detector

  • Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.385-391
    • /
    • 2013
  • X-ray computed tomography is a very powerful nondestructive technique in safety inspection of historic timber building. But, in field, various testing condition makes it difficult to carry out X-ray CT testing. Limited size in X-ray digital detector is one of the problems. In this study, a pitch pine disk with two holes was used to know how imperfection in X-ray projection affects CT image resolution. Using various number of projections, CT image was reconstructed by filtered back projection method, and then it was investigated how many projection is required to identify the holes in different location. Two artificial holes could be differently detected according to their location in cross section of specimen. One hole in center part of specimen was identified using more than 9 radiographs, but the other one which located in outer part of cross section could not be detected until more than 36 projections were used. Even though there is data missing in outer part of cross section due to limited size of detector, the center part of CT image could be reconstructed well and the resolution of outer part became higher with increase of the number of projections. For field application, the number of projections for CT image reconstruction needs to be decided with consideration of another nondestructive testing and the location of interest.

호흡기 질환에서 단순흉부 X-선 진단 (Plain Chest X-ray Diagnosis of Respiratory Disease)

  • 김상진
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권4호
    • /
    • pp.353-356
    • /
    • 1993
  • Advent of new imaging modalities such as computed tomography, magnetic resonance imaging and ultrasound contributed greately to the specific imaging diagnosis. However plain chest X-ray is still most prequently used for imaging diagnosis of respiratory disease in clinical pratic and it is important to make a good quality of X-ray film and good interpretation. The optimal chest X-ray should be taken with full inspiration without rotation and motion and the exposure is at the level of barely demonstrable thoracic vertebral disc space. It is recommended that higk KVP technique for detection of lesions which is overlaped by mediastinum, heart and rib cage. It is better to examine chest X-ray film start at some distance(6-8 feet) and closer to the film later on and the reader should not read a film in fatigue condition. The reading room should be quiet and relately dark illumination. It is important, to make a good X-ray film and good interpretation to reduce the observer error.

  • PDF

시뮬레이션 교육을 통한 일반 X선 검사의 오류 분석 (Error Analysis of General X-ray Examination by Using Simulation Training)

  • 성열훈
    • 한국방사선학회논문지
    • /
    • 제12권7호
    • /
    • pp.919-927
    • /
    • 2018
  • 본 연구에서는 일반 X선 검사를 대상으로 시뮬레이션 교육 모델을 제시하고 실습 시 발생하는 오류를 분석하고자 하였다. 2012년부터 2018년까지 총 183명 (남자 77명, 여자 106명)의 학생이 참가하였다. 시뮬레이션 X선 시스템은 컴퓨터방사선영상(computed radiography, CR) 시스템을 이용하였다. 환자 보호, X선 검사의 정확성, 영상의 안정성 등의 검사 프로세스에 발생하는 오류 빈도수를 분석하였다. 그 결과 환자 자세 설정 오류, X선 중심선의 정확성 오류, 영상검출판의 크기 및 위치 설정 오류, 그리드 사용의 오류, 마킹의 오류, X선 조사조건 설정 오류, 조사야 설정의 오류, X선 입사각도의 오류, X선 조사거리의 오류 순으로 분석되었다. 이러한 오류를 중심으로 개선된 방사선사 실습 교육이 필요할 것이며 그로 인하여 정밀한 검사와 고품질의 의료서비스를 제공하여 국민들의 보건의료에 조금이나마 기여할 수 있기를 기대한다.

디지털 엑스선 기술과 응용 (Digital X-Ray Technology and Applications)

  • 정진우;강준태;김재우;박소라;이명래;송윤호
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.1-13
    • /
    • 2019
  • In modern times, X-ray imaging has become a necessary tool for early diagnosis, quality control, nondestructive testing, and security screening. X-ray imaging equipment generally comprises an X-ray generator and an image sensor. Most commercially available X-ray generators employ filament-thermionic electron-based X-ray tubes, thus demonstrating typical analog behavior, such as slow response and large stray X-rays. Furthermore, digital X-ray sources, which have been studied extensively using field electron emitters manufactured from nanometer-scale materials, provide fast and accurately controlled ultra-shot X-rays. This could usher in a new era of X-ray imaging in medical diagnosis and nondestructive inspections. Specifically, digital X-ray sources, with reduced X-ray dose, can significantly improve the temporal and spatial resolution of fluoroscopy and computed tomography. Recently, digital X-ray tube technologies based on carbon nanotubes, developed by Electronics and Telecommunications Research Institute, have been transferred to several companies and commercialized for dental imaging for the first time.

소형 동물의 생체 촬영을 위한 고해상도 Micro-CT 시스템의 개발 (Development of High Resolution Micro-CT System for In Vivo Small Animal Imaging)

  • 박정진;이수열;조민형
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.