• Title/Summary/Keyword: X형

Search Result 63, Processing Time 0.042 seconds

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

Effectss of Zeolite contained in Polyimide Membrane for Gas Permeation Properties (폴리이미드/NaX막의 기체투과 특성에 미치는 NaX의 영향)

  • 최익창;김건중;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.51-52
    • /
    • 1997
  • 1. 서론 : 폴리이미드는 우수한 기계적 강도와 열적, 화학적 안정성으로 인해 최근 막분리 재료로 많이 연구 검토되고 있다. 대부분의 폴리이미드는 비교적 높은 선택도를 가지고 있으나 투과계수가 떨어지는 단점을 지니고 있어소 이를 극복하기 위한 많은 연구가 진행되어 왔다. 그 결과 투과계수를 크게 증가시킨 폴리이미드를 함성하였으나 선택도는 감소하여 투과특성의 상위한계를 넘지는 못하였다. 이 한계를 극복하기 의해서 복합잴를 이용하거나 UV, 플라즈마 처리에 의한 고분자막의 수식 등 많은 방법들이 연구되고 있다. 본 연구는 NaX형 제올라이트를 폴리이미드에 혼화시킨 막으로 산소/질소의 분리투과특성의 개선을 시도하였으며, NaX형 제올라이트와 폴리이미드 혼화방법, 혼화비율 등이 기체투과특성에 미치는 영향을 고찰하였다. 본 실험에 사용된 NaX형 제올라이트는 직접 합성하여 사용하였다. 폴리이미드는 2,3,5,6-Tetramethyl-1,4-phenylenediamine(p-TeMPD)과 (3,3,4,4'-dicarboxyphenyl)-hexafluoropropene-dianhydride(6FDA)로 합성한 6FDA-p-TeMPD 폴리이미드를 사용하였고, 그 투과계수는 122Barrer, 선택도$\alpha$$_{N_2/O_2}$ = 3.4이다.

  • PDF

Experimental Study of High-strength Steel CHS X-joints Under Axial Compression (지관 압축을 받는 고강도강 X형 원형강관접합부의 구조적 성능에 대한 실험적 연구)

  • Lee, Cheol Ho;Kim, Seon Hu;Chung, Dong Hyun;Kim, Dae Kyung;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Most of current representative design standards worldwide forbid or impose restrictions on the use of high-strength steels for hollow tubular structures. The mechanical background of these limitations appears unclear and unduly conservative, and their validity needs to be re-evaluated. In this study, a total of 9 CHS(Circular Hollow Section) X-joints were tested under axial compression and analyzed to examine if the high-strength steel restrictions specified by current design standards could be relaxed. All the high-strength steel CHS X-joints tested showed satisfactory performance compared to ordinary steel joints in terms of serviceability, ultimate strength, and ductility, although the yield strength of steel was even as high as 800MPa.

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

A Study on the Adsorption Characteristics of Nitrogen and Oxygen on Ion Exchanged Zeolite Adsorbents (이온교환된 제올라이트 흡착제의 질소 및 산소 흡착 특성 연구)

  • Jeong, Heon-Do;Kim, Dong-Sik;Kim, Kweon-Ill
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • Zeolite X adsorbents with large surface area were prepared for using oxygen PSA adsorbent. Selective adsorption performance of nitrogen on the synthesized zeolite X adsorbent was improved by the cation exchange of adsorbent. The zeolite X which had over $650m^2/g$ surface area was synthesized at the conditions of $SiO_2\;:\;Na_2O\;:\;H_2O\;:\;Al_2O_3$ = 2.5 : 3.5 : 150 : 1 mole ratio, $98^{\circ}C$ temperature and 18 h synthesized time in 50 L reactor. The metal ions Li, Ag, Ca, Br, Sr, etc. were investigated for ion exchange with zeolite X. Ag ion was showed the highest ion exchange rate among these metal ions and all metal ions were exchanged with Na ion at equivalent rate. Compared with the NaX adsorbent, the ion exchanged zeolite X adsorbent remarkably improved its adsorption performance of nitrogen at the conditions of $10{\sim}40^{\circ}C$ temperature and 0~9 atm pressure. At an equilibrium pressure under 0.5 atm, adsorption performance of nitrogen on the ion exchanged zeolite adsorbent increased in the order of Ag > Li > Ca > Sr> Ba > K, whereas at an equilibrium pressure over 1 atm showed in the order of Li > Ag > Ca > Sr > Ba > K. Nitrogen/oxygen separation factor of Li ion exchanged zeolite X adsorbent was 13.023 at the partial pressure of nitrogen/oxygen gas mixture similar to air and $20^{\circ}C$ adsorption temperature.

Effect of Zeolite-X ion Exchange on Adsorption Isotherms of Gases (X형 제올라이트의 이온교환이 기체 평형흡착량에 미치는 영향)

  • Kim, K.I.;Kim, T.H.;Park, J.K.;Kim, J.W.;You, Y.J.;Cho, S.C.;Jin, M.J.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.317-321
    • /
    • 1998
  • X-type Zeolite for the gas separation was prepared by hydrothermal methods and the zeolite was ion-exchanged with KCl, $CaCl_2$, $YCl_3$ and $InCl_3$ in order to investigate the effect of ions on the properties of molecular sieves. Adsorption isotherms of $CO_2$ on ion exchanged X-type zeolites and those of $O_2$ and $N_2$ on the synthesized zeolite were measured at $25^{\circ}C$ using a volumetric method and the adsorption characteristics were compared with each other. Model parameters for the Langmuir, Freundlich and Toth equations were regressed for the measured adsorption isotherms. In order to confirm the applicability of the zeolite on $CO_2-PSA$ processes, breakthrough tests and process simulation were undertaken. It was found that the X-type zeolite could be a potential adsorbent in recovering $CO_2$ from flue gas.

  • PDF

Numerical Study of High-strength Steel CHS X-joints Including Effects of Chord Stresses (주관응력효과를 고려한 고강도강 X형 원형강관접합부의 수치해석 연구)

  • Kim, Seon Hu;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.115-126
    • /
    • 2018
  • Internationally representative steel design standards have forbidden or limited the application of high-strength steels to tubular joints, partly because of concerns about their unique material characteristics such as high yield ratio. Most of design standards stipulate that for steels whose yield strengths exceed 355 or 360 MPa, the strength equations cannot be utilized or strength reduction factor below 1.0 should be multiplied. However, the mechanical background behind these limitations is not clear. Experimental testing of high-strength steel CHS (circular hollow section) X-joints recently conducted by the authors also clearly indicated that the current limitations might be unduly conservative. As a continuing work, extensive, test-validated numerical analyses were made to investigate the behavior of high-strength steel CHS X-joint under axial compression. Three steel grades covering ordinary to very high strength steels were considered in the analysis. Again it was found that the high strength penalty to the joint strength in current standards is too severe and needs to be relaxed. The high-strength steel joints under the effects of chord stress generally showed higher strength than the ordinary steel joints and their strengths were conservatively predicted by current standards. It is also emphasized that current format of the CHS X-joint strength equation does not reflect observed behavior and needs to be recast.

Vibration Control on the Diesel Power Plant by the Phase Adjustment of Paralled Engines' X-Mode Vibration; (병렬 엔진의 X형 진동 위상 조정에 의한 디젤 발전 플랜트 진동 제어)

  • 이돈출;김의간;전효중
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.701-708
    • /
    • 1996
  • Diesel power plants are frequently used as a power supplier on the island and the isolated places where electric power is required. The heat efficiency of the low speed 2 stroke diesel engines is higher than those of 4 stroke diesel engines or other heat engines and further its mobility and durability is also better than other engines. They can be also easily repaired and maintained. With these advantages, demand for the use of the low speed 2 stroke diesel engine as a power source is increasing. However, there are some disadvantages with these diesel engines such as the bigger vibrating excitation forces generated by higher combustion pressure in cylinder and by the inertia force of the reciprocating parts. Further, engine vibrations are transfered into their adjacent buildings and manufacturing factories and eventually produces local vibrations. In order to reduce X-mode vibration of engine body, several methods have been introduced in the recent researches. In this paper, accordingly, a new vibrationcontrol method applying a synchrophaser and a top bracing between two diesel engines is adopted in order to reduce these structural vibrations of diesel power plant. It was experimentally verified that the structural vibrations were greatly reduced by the phase adjustment for the 6th order X-mode vibration with the synchrophaser and the top bracing.

  • PDF