• Title/Summary/Keyword: Wyner-Ziv

Search Result 51, Processing Time 0.021 seconds

Rate-Distortion Control Method for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 전송률 및 왜곡 제어 방법)

  • Moon, Hak-Soo;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.952-960
    • /
    • 2012
  • In the distributed video coding (DVC) system, the difference between the side information and the original Wyner-Ziv frame is corrected using channel codes and the additional parity bits are requested through feedback channel if the error is not corrected. The efficient bit rate control is important to use the DVC system in the band-limited channel, such as mobile communication environments. In this paper, the constant bit rate control method in the encoder of the DVC system is proposed. The coding performance as well as the bit rate is efficiently controlled by the proposed method.

SELECTIVE HASH-BASED WYNER-ZIV VIDEO CODING

  • Do, Tae-Won;Shim, Hiuk-Jae;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.351-354
    • /
    • 2009
  • Distributed video coding (DVC) is a new coding paradigm that enables to exploit the statistics among sources only in decoder and to achieve extremely low complex video encoding without any loss of coding efficiency. Wyner-Ziv coding, a particular implementation of DVC, reconstructs video by correcting noise on side information using channel code. Since a good quality of side information brings less noise to be removed by the channel code, generation of good side information is very important for the overall coding efficiency. However, if there are complex motions among frames, it is very hard to generate a good quality of side information without any information of original frame. In this paper, we propose a method to enhance the quality of the side information using small amount of additional information of original frame in the form of hash. By decoder's informing encoder where the hash has to be transmitted, side information can be improved enormously with only small amount of hash data. Therefore, the proposed method gains considerable coding efficiency. Results of our experiment have verified average PSNR gain up to 1 dB, when compared to the well-known DVC codec, known as DISCOVER codec.

  • PDF

Efficient Side Infonnation Generation Techniques and Perfonnance Evaluation for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 부가정보 생성 기법의 성능 평가)

  • Moon, Hak-Soo;Lee, Chang-Woo;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.140-148
    • /
    • 2011
  • The side information in the distributed video coding system is generated using motion compensated interpolation methods. Since the accuracy of the generated side information affects the amount of parity bits for the reconstruction of Wyner-Ziv frame, it is important to produce an accurate side information. In this paper, we analyze the informance of various side information generation methods and propose an effective side information generation technique. Also, we compare each side information generation methods from the hardware point of view and analyze the performance of distributed video coding system using various side information generation methods.

Reducing Decoding Complexity by Improving Motion Field Using Bicubic and Lanczos Interpolation Techniques in Wyner-Ziv Video Coding

  • Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2351-2369
    • /
    • 2012
  • This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.

Adaptive Correlation Noise Model for DC Coefficients in Wyner-Ziv Video Coding

  • Qin, Hao;Song, Bin;Zhao, Yue;Liu, Haihua
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • An adaptive correlation noise model (CNM) construction algorithm is proposed in this paper to increase the efficiency of parity bits for correcting errors of the side information in transform domain Wyner-Ziv (WZ) video coding. The proposed algorithm introduces two techniques to improve the accuracy of the CNM. First, it calculates the mean of direct current (DC) coefficients of the original WZ frame at the encoder and uses it to assist the decoder to calculate the CNM parameters. Second, by considering the statistical property of the transform domain correlation noise and the motion characteristic of the frame, the algorithm adaptively models the DC coefficients of the correlation noise with the Gaussian distribution for the low motion frames and the Laplacian distribution for the high motion frames, respectively. With these techniques, the proposed algorithm is able to make a more accurate approximation to the real distribution of the correlation noise at the expense of a very slight increment to the coding complexity. The simulation results show that the proposed algorithm can improve the average peak signal-to-noise ratio of the decoded WZ frames by 0.5 dB to 1.5 dB.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

Efficient Distributed Video Coding System without Feedback Channel

  • Moon, Hak-Soo;Lee, Chang-Woo;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1043-1053
    • /
    • 2012
  • In distributed video coding (DVC) systems, the complexity of encoders is greatly reduced by removing the motion estimation operations in encoders, since the correlation between frames is utilized in decoders. The transmission of parity bits is requested through the feedback channel, until the related errors are corrected to decode the Wyner-Ziv frames. The requirement to use the feedback channel limits the application of DVC systems. In this paper, we propose an efficient method to remove the feedback channel in DVC systems. First, a simple side information generation method is proposed to calculate the amount of parity bits in the encoder, and it is shown that the proposed method yields good performance with low complexity. Then, by calibrating the theoretical entropy with three parameters, we can calculate the amount of parity bits in the encoder and remove the feedback channel. Moreover, an adaptive method to determine quantization parameters for key frames is proposed. Extensive computer simulations show that the proposed method yields better performance than conventional methods.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.

Multi-View Wyner-Ziv Video Coding Based on Spatio-temporal Adaptive Estimation (시공간 적응적인 예측에 기초한 다시점 위너-지브 비디오 부호화 기법)

  • Lee, Beom-yong;Kim, Jin-soo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.9-18
    • /
    • 2016
  • This paper proposes a multi-view Wyner-Ziv Video coding scheme based on spatio-temporal adaptive estimation. The proposed algorithm is designed to search for a better estimated block with joint bi-directional motion estimation by introducing weights between temporal and spatial directions, and by classifying effectively the region of interest blocks, which is based on the edge detection and the synthesis, and by selecting the reference estimation block from the effective motion vector analysis. The proposed algorithm exploits the information of a single frame viewpoint and adjacent frame viewpoints, simultaneously and then generates adaptively side information in a variety of closure, and reflection regions to have a better performance. Through several simulations with multi-view video sequences, it is shown that the proposed algorithm performs visual quality improvement as well as bit-rate reduction, compared to the conventional methods.

A PDWZ Encoder Using Code Conversion and Bit Interleaver (코드변환과 비트 인터리버를 이용한 화소영역 Wyner-Ziv 부호화 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.52-62
    • /
    • 2010
  • Recently, DVC (Distributed Video Coding) is attracting a lot of research works since this enables us to implement a light-weight video encoder by distributing the high complex tasks such as motion estimation into the decoder side. In order to improve the coding efficiency of the DVC, the existing works have been focused on the efficient generation of side information (SI) or the virtual channel modeling which can describe the statistical channel noise well. But, in order to improve the overall performance, this paper proposes a new scheme that can be implemented with simple bit operations without introducing complex operation. That is, the performance of the proposed scheme is enhanced by using the fact that the Wyner-Ziv (WZ) frame and side information are highly correlated, and by reducing the effect of virtual channel noise which tends to be clustered in some regions. For this aim, this paper proposes an efficient pixel-domain WZ (PDWZ) CODEC which effectively exploits the statistical redundancy by using the code conversion and Gray code, and then reduces the channel noise by using the bit interleaver. Through computer simulations, it is shown that the proposed scheme can improve the performance up to 0.5 dB in objective visual quality.