• Title/Summary/Keyword: Wound Induction Generator

Search Result 25, Processing Time 0.025 seconds

Comparison of Squirrel cage and Wound induction generator characteristics in Wind Power System (농형 유도발전기와 권선형 유도발전기의 특성비교)

  • Kim, Chan-Ki;Lee, Won-Kyo;Im, Cheol-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.469-471
    • /
    • 2005
  • Wind farms employs induction generators which are two type, one is Squirrel cage for fixed speed wind turbines and the other is Wound induction generator (doubly fed induction generator DFIG) for variable speed wind turbines. this paper describes grid connection scheme of wind power system using two type induction generators and simulation results show the characteristics of two type induction generators.

  • PDF

Power Analysis of Grid Connected Doubly Fed Induction Generator for Wind Power Generating System (풍력발전용 계통연계 DFIG의 출력 해석)

  • Lee, Hyun-Chae;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.326-329
    • /
    • 1997
  • This paper deals with the generating power analysis of wound rotor induction generator according to the rotor excitation for use of DFIG (Doubly Fed Induction Generator) system in wind power generation as a part of renewable energy development. In this way, the generating power of wound rotor induction generator can be achieved for a wide range wind speed of supersynchronous and subsynchronous speed.

  • PDF

A control of wound-rotor induction generator for random wave input generation system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2007
  • This paper deals with the secondary excited induction generator applied to random wave input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled CSI connected to the secondary windings supplies the secondary current with slip frequency. For testing this method, the input torque simulator is constructed, according to the power flow analysis. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

Wound-rotor induction generator system for random wave input power

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this paper, the two-axis theory is adopted to analyze the secondary excited induction generator applied to random wave input generation system. The analysis by the two-axis theory helps to know the transmitted power of the induction machine. The electric variables, like as primary and secondary currents, voltages, and electric output power, were able to express as equations. These equations are help to simulate the generation system numerical model and to know the transient state of the system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled VSI connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this method, the input torque simulator in the laboratory to drive the secondary excited results show the advantage of secondary excited induction generator system for the random input wave generation system.

A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구)

  • 장성일;정종찬;김광호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.

Performance of Double Fed Induction Machine at Sub- and Super-Synchronous Speed in Wind Energy Conversion System

  • Eskander, Mona N.;Saleh, Mahmoud A.;El-Hagry, Mohsen M.T.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.575-581
    • /
    • 2009
  • In this paper two modes of operating a wound rotor induction machine as a generator at sub-and super-synchronous speeds in wind energy conversion systems are investigated. In the first mode, known as double fed induction generator (DFIG), the rotor circuit is fed from the ac mains via a controlled rectifier and a forced commutated inverter. Adjusting the applied rotor voltage magnitude and phase leads to machine operation as a generator at sub-synchronous speeds. In the second mode, the machine is operated in a slip recovery scheme where the slip energy is fed back to the ac mains via a rectifier and line commutated inverter. This mode is described as double output induction generator (DOIG) leading to increase the efficiency of the wind-to electrical energy conversion system. Simulated results of both modes are presented. Experimental verification of the simulated results are presented for the DOIG mode of operation, showing larger amount of power captured and better power factor when compared to conventional induction generators.

Grid Connection Algorithm for Doubly-Fed Induction Generator Using Rotor Side PWM Inverter-Converter (회전자측 PWM 인버터-컨버터를 사용한 이중여자 유도형 풍력 발전기의 계통 투입 알고리즘)

  • 정병창;권태화;송승호;김일환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.528-534
    • /
    • 2003
  • A grid connection algorithm is proposed for the doubly-fed induction generator (DFIG) which is widely adopted in high power variable speed wind turbine. Before the stator of DFIG is connected to grid, rotor-side converter is used to control the induced stator voltage. As a result, the stator transient current is limited below the rate value during the connection by the proposed synchronization of the stator voltage to the grid voltage. A wind power generation simulator using DC motor and wound-rotor induction generator is built and the dynamic characteristics of proposed algorithm is verified experimentally.

Power Factor Control of Wound Rotor Inductiion Generator for Wind Power Generation (풍력발전을 위한 권선형 유도발전기의 역률제어)

  • 김일환
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.6-9
    • /
    • 2000
  • In wind power generating system connected in power grid the value of stator flux has almost constant because the stator side of wound rotor induction generator is connected to power grid. Using the stator and rotor current it is possible to achieve control of generating power in stator side. This means that we can control the power factor by decoupled rotor current in synchronously rotating reference frame. To verify the theoretical analysis results of computer simulation and experiment are presented to support the discussion.

  • PDF

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.