• Title/Summary/Keyword: Workpiece speed

Search Result 314, Processing Time 0.022 seconds

The Machinability Estimation Depending on Cutting Condition in A16061-T6 Turning Operations (A16061-T6의 선삭가공에서 가공조건에 따른 절삭특성 평가)

  • Choi, Tae-Kyu;Kim, Jeong-Suk;Park, Jin-Hyo;Lim, Hak-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.675-680
    • /
    • 2009
  • Because of high specific stiffness, the aluminum alloy has been used for various industry field. Specially, the heat-treated aluminum alloy is difficult-to-machine material and machining test is necessary to evaluate and improve the machinability. In order to manufacture the functional part, appropriate cutting condition is selected by considering surface quality, machining time, and workpiece deflection by cutting force. In this investigation, the machinability of A16061-T6 is estimated by changing cutting conditions. The variable cutting conditions are cutting speed, depth of cutting, and feed rate. The estimation is done by analysis of cutting force, surface roughness, and surface shape according to the change of cutting conditions.

  • PDF

A Study on Roughness Characteristic about Rotational Accuracy Variation (스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.

Influence of fixed pressure on the machining accuracy of inner diameter of hollow shaft (고정압이 중공축 내경의 가공정밀도에 미치는 영향)

  • Jeon, Young-Seog;Jang, Sung-Min;Kang, Shin-Gil
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • This paper presents a study of the influence of fixed pressure in turning. The effect of roundness error and diameter deformation were studied with respect to the fixed pressure applied inside the cylindrical work piece made by boring tool in CNC lathe. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is SM45C and the machining method is dry cutting. Cutting conditions as cutting speed, feed rate and depth of cut are constant. Finally, the change of fixed pressure had influence on the roundness error and diameter deformation.

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

A Process Design for Hot-Forging of a Titanium-6242 Disk (티타늄-6242 디스크의 열간단조를 위한 공정설계)

  • 박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.271-281
    • /
    • 1994
  • Titanium-6242 $({\alpha}+{\beta})$ alloy has been used for aircraft engine components such as disks and blades, because it has an excellent strength/weight ratio at high temperatures. When this material is forged to manufacture disks, process parameters should be carefully designed to control strain and temperature distributions within the process windows by which desirable mechanical properties can be produced. In the present investigation, it was intended to design the process parameters for a conventional hot forging of this material by using a rigid-thermoviscoplastic finite element analysis technique. It was assumed that the process was performed by a screw press which is capable of maintaining a constant ram speed during loading. From the analysis results, it was found out that the initial temperature of the workpiece and the die shape were important parameters to control the forging process. In result, these parameters were properly designed for hot forging of a disk with specific dimensions.

  • PDF

A Study on the Signal Process of Cutting Forces in Turning and its Application (2nd Report) -Automatic Monitor of Chip Rorms using Cutting Forces- (선삭가공에 있어서 선삭저항의 신호처리와 그 응용에 관한 연구(II))

  • Kim, Do-Yeong;Yun, Eul-Jae;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 1990
  • In automatic metal cuttings, the chip control is one of the serious problems. So the automatic detection of chip forms is essential to the chip control in automatic metal cuttings. Cutting experiments were carried out under the variety of cutting conditions (cutting speed, feed, depth of cut and tool geometry) and with workpiece made of steel (S45C), and cutting forces were measured in-processing by using a piezoelectric type Tool Dynamometer. In this report, the frequency analysis of dynamic components, the upper frequency distributions, the ratio of RMS values, the numbers of null point and the probability density were calculated from the dynamic componeents of cutting forces filtered through various band pass filters. Experimental results showed that computer chip form monitoring system based on the cutting forces was designed and simulated and that 6 type of chip forms could be detected while in-process machining.

  • PDF

A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill (AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

Finishing of Scupltured Surface through Cusp Pattern Control and Micro-ball End Milling (Cusp 패턴 조정과 미소 볼엔드 밀링을 이용한 3차원 자유곡면의 다듬질)

  • Sim, C.G.;Yang, M.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.177-183
    • /
    • 1994
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-from surfaces. However, cusps(or scallops) remaining at the machined part along the cutter paths require anothe finish process such as polishing or grinding. In this study, a high sped micro ball-end milling method has been suggested for the finish of free- form surfaces. A new tool path which makes the geometrical roughness of workpiece be constant through the machined surface has been developed. In the high speed machining of micro ball-end muling experimets, the developed tool paths have been successfully applied. And it was concluded that the surface roughness from this finish cuts of micro ball-end milling process was acceptable.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

An experimental study on the roundness effect for the cutting conditions in a cylinder cutting by end mill (엔드밀에 의한 원통 가공시 절삭조건에 따른 진원도의 실험적 연구)

  • 박희견
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.52-60
    • /
    • 1999
  • In this study the effect of roundness error with respect to the cutting conditions using the external cylindrical work piece by end mill cutting in a machining center was studied. the end mill used in this study is HSS coated with Ti-N which is of Ø 12-4 flutes. The material of workpiece is SM20C and cutting oil is used as a cooling flued The cutting experiments were carried out for the several cutting conditions(depth of cut height of end mill feed rate revolution per minute and cutting direction) and their roundness effects were compared using the least squares circle measuring method. The experimental results are summarized as follows : 1) The cutting depth is dominant for the roundness of a cylindrical work piece and the cutting speed must be determined precisely when the cutting depth is large 2) When the cutting direction in circular manufacturing is the same with the spindle rotation i.e up-cutting condition the surface roundness is also improved.

  • PDF