• 제목/요약/키워드: Working capacity

검색결과 593건 처리시간 0.023초

휘발성 유기화합물용 수동식 시료채취기 개발 (Development of Passive Samplers for Volatile Organic Compounds)

  • 장미연;이광용;전현진
    • 한국산업보건학회지
    • /
    • 제32권4호
    • /
    • pp.359-370
    • /
    • 2022
  • Objective: This study is intended to design a commercially available passive sampler and conduct performance test on its use as a media for evaluating a working environment. Methods: This study was conducted to select adsorbents, design models, and evaluate storage stability and sampling rates for the development of new types of passive samplers. Results: The impurity detection, adsorbent capacity and breakthrough volume of five types of activated carbon were tested for selection of an adsorbent. One product was selected in consideration of the efficiency of purchase. A number of passive samplers were designed in a radial style and a badge style using plastic as a material. The final two prototypes were made using molds or 3D printing. For the storage stability evaluation, samples were stored at different temperature for 1~21 days and then analyzed. Most of the chemicals had excellent storage stability when refrigerated. However, some chemicals such as dichloromethane and methyl ethyl ketone need to be analyzed as soon as possible after sampling. Conclusion: In this study, new types of passive samplers for 66 chemical compounds were developed. The evaluation of storage stability and sampling rates showed different results depending on the properties of the chemical substance. For some chemicals such as methyl ethyl ketone and dimethylformamide, activated carbon is inappropriate as an absorbent. In future studies, additional experiments are required on chemicals that are difficult to collect with activated carbon.

사회복지사의 윤리의식이 직무만족에 미치는 영향: 자기효능감의 매개효과 (Effects of Ethical Consciousness on Job Satisfaction of Social Workers: Mediated Effects of Self-efficacy)

  • 박종두;석말숙
    • 산업융합연구
    • /
    • 제21권3호
    • /
    • pp.149-157
    • /
    • 2023
  • 본 연구의 목적은 사회복지사의 윤리의식이 직무만족에 미치는 영향에서 자기효능감의 매개효과를 검증하는 것이다. 연구대상은 2020년 한국 사회복지사 통계연감의 비율을 기반으로 서울 사회복지시설에 근무하는 사회복지사 512명에게 온라인 설문을 실시하여 연구했다. 연구는 IRB 승인으로 진행되었다. 본 연구의 분석과 통계는 SPSS & AMOS 25.0를 활용했다. 사회복지사의 윤리의식이 직무만족에 미치는 영향에서 자기효능감의 매개효과 검증은 부트스트랩핑을 활용하였다. 연구결과 사회복지사의 윤리의식이 자기효능감과 직무만족에 정(+)적인 영향을 검증하였다. 또한 사회복지사의 윤리의식이 직무만족에 미치는 사이에서 자기효능감의 정(+)적인 매개효과를 검증했다. 연구결과 사회복지사의 직무만족 증진을 위한 윤리의식에 관한 역량강화 지원 및 자기효능감을 도모할 수 있도록 돕는 제도와 실천이 중요함을 시사한다.

근감소 진단 기준에 따른 근력 저하 집단의 삶의 질과 유무산소 운동 실천율 비교 : 제7기(2016~2018) 국민건강영양조사 자료를 토대로 (Comparison analysis of quality of life and exercise regularity in the possible sarcopenia group according to the criteria for sarcopenia diagnostic: using the 7th Korean National Health and Nutrition Examination Survey(2016~2018))

  • 이용수;공성아
    • 디지털융복합연구
    • /
    • 제20권1호
    • /
    • pp.361-368
    • /
    • 2022
  • 이 연구에서는 새롭게 Asian Working Group for Sarcopenia에서 제시한 수정된 근감소증 진단 cut-off value를 이용하여 정상 집단과 근력이 저하된 possible sarcopenia(PS) 집단을 구분하였다. 국민건강영양조사 제 7기 자료를 토대로, 집단간 신체적 특성의 차이와 삶의 질, 유·무산소 운동 실천에 따른 교차비를 산출하였다. 대상자는 20세-80세까지를 포함하였다. 집단간 차이는 복합표본 독립 t-test와 logistic 회귀분석을 통해 확인하였다. 그 결과는 PS 집단은 나이가 더 많았으며, 신장, 체중, 체질량지수가 모두 낮았다. 허리둘레는 남성 PS 집단이 유의하게 낮았으나, 여성 PS 집단이 유의하게 높았다. 삶의 질의 영역 중 운동 능력에서 일상활동에 지장이 있는 경우가 남성에서는 8.28배, 여성에서는 15.52배 높았다. 유산소 운동의 실천 여부도 PS 집단에서 남녀 각각 19%, 26% 더 낮았으며, 근력 운동실천 여부도 남녀 각각 52%, 43% 더 낮았다.

부하 형태에 따른 전력패턴 분석 (Analysis of Power Pattern According to Load Types)

  • 황미용;조승준;이순형;최용성
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.369-375
    • /
    • 2023
  • In this paper, we compared and analyzed the power load patterns of dormitory buildings and office buildings to use them as basic data (demand analysis and capacity design) for the design and operation of microgrids for multi-use facilities, and the following conclusions were got. During the daytime on regular weekdays, the power consumption load pattern of office buildings was relatively large at 264.0~332.3 kWh, and during the evening hours, the power consumption load pattern of dormitory buildings was relatively large at 233.0~258.3 kWh. In the case of vacation, during the daytime on weekdays, the power consumption load pattern of office buildings was relatively large at 279.1~407.4 kWh, and in the evening, the power consumption load pattern of dormitory buildings was relatively high at 280.1~394.1 kWh. During the daytime on regular weekends, the power consumption of dormitory-type buildings was relatively high at 133.5~201.6 kWh, and it was found that the power consumption of dormitory-type buildings appeared relatively high at 187.5~252.1 kWh. During a vacation in the daytime on weekends, the power consumption of dormitory-type buildings was found to be 186.5 kWh~ and 218.6 kWh. The increase in power consumption during a vacation (December-February) compared to normal (April-June) was thought to be due to an increase in electricity demand, and the reason for the higher power consumption in dormitory buildings during the vacation was due to reduced working hours in office buildings.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

크롤러 타입 자주식 수집형 감자 수확기 개발 및 성능분석 (Development and Performance Analysis of Self-Propelled Crawler and Gathering Type Potato Harvester)

  • 김원경;이상희;최덕규;박석호;강연구;문석표;천창욱;김용주;장성혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.23-29
    • /
    • 2024
  • Potatoes are one of the world's four major crops, and domestic consumption is currently increasing in Korea. However, the mechanization rate of potatoes is very low, and especially, harvesting is the most labor-intensive task in potato production. In Korea, potato-collecting work depends on manpower, so it is necessary to develop a gathering-type harvester that can be used for processes from digging to harvesting. Therefore, in this study, a self-propelled-type potato harvester was developed, and its performance was analyzed to mechanize harvesting. The potato harvester was developed to have a crawler-type driving part with a 60 hp diesel engine and consisted of a digging part that digs potatoes from the ground, a vertical transporting part that transfers the dug potatoes to the height of the collection bag, a separating part that separates debris, such as stones and soil, and a collecting part that loads the collection box. A field test of the potato harvester was conducted, and performance was evaluated by the damage, loss, and debris mixing proportions, which were 2.5%, 2.8%, and 2.6%, respectively. The working capacity was 1.2 h/10 a. The economic analysis results showed that the cost of harvesting work could be reduced by 12.7% compared to manual harvesting.

수학적 사고력에 관한 인지신경학적 연구 개관 (A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability)

  • 김연미
    • 인지과학
    • /
    • 제27권2호
    • /
    • pp.159-219
    • /
    • 2016
  • 수학적 사고력은 STEM(science, technology, engineering, mathematics) 분야에서의 학업적인 성취와 과학기술의 혁신에서 중요한 역할을 하고 있다. 본 연구에서는 학제 간 연구 분야인 수 인지(numerical cognition) 및 수학적 인지와 관련된 최근의 인지신경학적 연구 결과들을 종합하여 개관하였다. 첫째로 수학적 사고의 기초가 되는 뇌 기제의 위치와 정보처리 메커니즘을 확인하였다. 수학적 사고는 영역 특정적(domain specific)인 기능인 수 감각과 시공간적 능력뿐만 아니라 영역 일반적(domain general)인 기능인 언어, 장기기억, 작업 기억(working memory) 등을 기초로 하며 이를 토대로 추상화, 추론 등의 고차원적인 사고를 한다. 이 중에서 수 감각과 시공간적 능력은 두정엽(parietal lobe)을 기반으로 한다. 두 번째로는 수학적 사고 능력에서 관찰되는 개인 차이에 대하여 고찰하였다. 특히 수학 영재들의 신경학적인 특성을 신경망 효율성(neural efficiency)의 관점에서 고찰해 보았다. 그 결과 높은 지능이란 두뇌가 얼마나 많이 일하느냐가 아니라 얼마나 효율적으로 일하는가에 달렸다는 사실을 확인하였다. 수학 영재들의 또 다른 특성은 좌반구와 우반구 간의 연결과 반구 내에서 전두엽과 두정엽의 연결이 뛰어나다는 사실이다. 세 번째로는 학습과 훈련, 그리고 성장에 따른 변화 및 발전에 대한 분석이다. 개인이 성장하며, 수학 학습과 훈련을 하게 될 때 이에 따라 두뇌 피질에서도 변화가 반영되어 나타난다. 그 변화를 피질에서의 활성화 수준의 변화, 재분배, 구조적 변화라는 관점에서 해석하였다. 이 중에서 구조적 변화는 결국 신경 가소성(neural plasticity)을 의미한다. 마지막으로 수학적 창의성은 수학적 지식(개념)을 기초로 하여 수학적 개념들을 결합하는 단계가 요구되며, 그 후 결합된 개념들 중에서 심미적인 선택을 통해 수학적 발명(발견)으로 연결된다. 전문성이 높아질수록 결합과 선택이라는 두 단계가 더욱 중요해진다.