• 제목/요약/키워드: Working Robot

검색결과 347건 처리시간 0.026초

퍼지제어기를 이용한 이동로봇의 이동계획 설계 (Moving Plan Design of Autonomous Mobile Robot Using Fuzzy Controller)

  • 박경석;이경웅;정헌;최한수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.38-41
    • /
    • 2003
  • An Autonomous Mobile Robot(AMR) performs duty by sensing a recognized situation and controlling suitably. The existing algorithm has some advantages that it is possible to express the obstacle exactly and the robot is sensitive to the change of environment. However, this algorithm needs to control repeatedly according to the modelling and working environment that requires a great quantity of calculations. In this paper, We supplement shortcoming and designed direction algorithm of AMR using fuzzy controller. Fuzzy controller does not derive special quality spinning expression for system, and uses rules by value expressed by language. It is used extensively to non-linear, plant which mathematical modelling is difficult etc... Fuzzy control algorithm of AMR that is used by this research applies obstacle position, distance of obstacle, Progress direction of robot, speed of robot, Perception area of sensor, etc... by fuzzy control and decide steering angle of robot.

  • PDF

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

조립 공정에서 양팔 로봇의 구조에 따른 작업성 평가 방법 연구 (A Study on the Performance Analysis of the Dual-arm Robot for the Assembly Task)

  • 김기훈;박동일;박종우;김휘수;조영수;정원석
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.164-171
    • /
    • 2022
  • Recently, interest of a dual arm robot which can replace humans is increasing in order to improve the working environment and solve the labor shortage. Various studies related with design and analysis of dual-arm robots have been conducted because dual arm robots can have various kinematic configurations according to the objective task. It is necessary to evaluate the work performance according to various kinematic structures of the dual arm robot to maximize its effectiveness. In the paper, the performance analysis is studied according to the shoulder configuration and the wrist configuration of the dual-arm robot by using main performance indices such as manipulability, condition number, and minimum singular value by assigning proper weight values to each objective motion. Performance analysis for the robotic assembly process is effectively carried out for each representative dual arm robot configuration.

전복방지를 위한 가변 구조 이동 로봇의 설계와 구현 (Design and Implementation of a Mobile Robot with a Variable Structure for Tip-over Prevention)

  • 이성민;박정길;박재병
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, we design and implement a mobile robot with variable structure for tip-over prevention. The mobile robot is designed for the purpose of stable drive and work in outdoor terrain. The outdoor terrain is rough and uneven. In this terrain, the tip-over of the mobile robot can occur while driving and working. Therefore, the structure of the mobile robot must be designed in consideration of stable drive and work. The proposed structure is defined as an X-shape for overall balance of the mobile robot. The shape is designed by using a multi-level structure for reducing the size of the robot. To verify the effectiveness of the proposed design, we analyze the tip-over characteristics according to the height of gravitational center and the extension length of the robot. Finally, we develop a prototype of the mobile robot with variable structure, taking the results of the tip-over analysis into consideration.

Crawling 방식을 이용한 관 탐사용 소형 로봇의 이동속도 해석 (Theoretical Velocity Analysis of Micro Robot Based on Crawling Locomotive Mechanism for Pipe Inspection Micro Robot)

  • 장기현;박현준;김병규
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.633-641
    • /
    • 2008
  • Recently, the necessity for diagnosis and management of pipes has emerged as the issue due to contamination of water supply generated by corrosion of pipes. Although inspection has been performed with industrial endoscopes, the method has limits for full diagnosis of pipes due to the lack of working range. As a solution for this problem, many locomotive mechanisms for a micro robot with endoscope functions were proposed. In this paper, we analyze the locomotive mechanism of crawling robot proposed as locomotive device for pipe inspection. Based on a mechanical modeling of motor and micro robot inside small pipe, the theoretical formula for velocity is obtained. This derived theoretical formula is demonstrated the feasibility through the comparison with experimental result. Also, we could find the most important element influencing the moving velocity of micro robot when the robot operates in small pipe. Consequently, it is expected that this study can supply useful information to design of crawling robot to move in small pipe.

자율탐색 로봇 설계를 위한 M&S(Modeling & Simulation) 환경 연구 (A Study on M&S Environment for Designing the Autonomous Reconnaissance Ground Robot)

  • 김재수;손현승;김우열;김영철
    • 한국군사과학기술학회지
    • /
    • 제11권6호
    • /
    • pp.127-134
    • /
    • 2008
  • An autonomous reconnaissance ground robot performs its duty in various different environments such as mountain-scape, desert and under-water through changing its shape and form according to the environment it is working in. Making a prototype robot for each environment requires extra cost and time. It is also difficult to modify the problem after production. In this paper, we propose the adoption of M&S(Modeling & Simulation) environment for the production and design of the autonomous reconnaissance ground robot. The proposed method on the M&S environment contributed to the more effective and less time consuming production of the robot through the Pre-Modeling and Pre-Simulation process. For example, we showed the design and implementation of the autonomous reconnaissance ground robot under the proposed environment and tools.

산업용 양팔로봇 제어 S/W 프레임 개발 (Development of S/W Framework for the Industrial Dual-arm Robot)

  • 최태용;도현민;박동일;박찬훈;김두형;박경택
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.887-891
    • /
    • 2013
  • Human rights at poor working condition is the severe problem in modern manufacturing system. The industrial dual-arm robot is being developed to meet these social issues fundamentally. The dual-arm robot can work instead of human workers. We developed the new dual-arm robot for manufacturing mobile phone and TV. It has advantages such as the solo controller for both arms, the human sized body and arms. The software platform for the industrial dual-arm robot is being developed which has strength in its convenience and intelligence compared to conventional the robot software platforms. Here the development of the dual-arm robot software platform is introduced.

컬러 모노 카메라를 이용한 전착 로봇의 자동 제어 (Automatic Control of an Electrophoretic Deposition Robot using a Color Mono Camera)

  • 박재병
    • 전자공학회논문지SC
    • /
    • 제46권3호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문에서는 컬러 모노 카메라를 이용한 자동 전착 로봇 시스템 (Automatic Electrophoretic Deposition Robot System)을 제안한다. 전착 로봇 시스템은 실제 전착 작업 수행을 위한 2자유도 직교 로봇과 로봇 자동 제어를 위한 컬러 모노 카메라로 구성되어 있다. 직교 로봇은 전착 작업 특성상 10mm/s까지 저속 구동이 가능하도록 스크류 (Screw)를 사용하여 감속 구동하였다. 컬러 모노 카메라는 로봇과 비커에 부착된 컬러 마커를 인식하여 각각의 위치를 측정하고 측정된 위치를 기반으로 로봇을 제어한다. 또한, 카메라에 의해 비커에 부착된 컬러 마커의 조합을 인식하여 다양한 작업 변수를 갖는 전착 작업을 판단한다. 제안된 자동 전착 로봇 시스템의 효율성을 입증하기 위해 전착 작업 실험을 수행하였고 그 결과를 제시하였다.

건설로봇용 인간-로봇 협업 제어 (Human-Robot Cooperative Control for Construction Robot)

  • 이승열;이계영;이상헌;한창수
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.

보행로봇의 시뮬레이터개발에 의한 보행패턴계획의 기초적 연구 (A Basic Study of Planning Walking Pattern by developing a New Biped Robot-Simulator)

  • 박창용;권현규
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.87-94
    • /
    • 2010
  • In this paper, a new simulator of the biped robot for planning walking patterns was showed. And this simulator(MHBiped) is able to not only visualize the plan of patterns but also verify whether a biped robot design is suitable. In addition, MHBipd can modify various kinds of walking parameters and the trajectory of biped robot. Therefore, a new biped robot can be designed easily by the this simulator before you apply to a robot. As a result, a well-balanced parameters of walking patterns watching the movement of CG and ZMP can be obtained. Walking patterns should be changed according to both the existence of obstacles and conditions of ground and it can be described by the trajectory of hip and ankles. All those trajectorys can be also obtained by the cubic spline functions and the way of modeling walking patterns. The results of simulator, the movement function of CG and ZMP, the cubic spline functions and modeling of biped robot were introduced in this paper. And the effectiveness of this simulator was confirmed by the simulations.