• Title/Summary/Keyword: Working Motion Analysis

Search Result 104, Processing Time 0.036 seconds

Tillage Characteristics Estimation of Crank-type and Rotary-type Rotavators by Motion Analysis of Tillage Blades

  • Nam, Ju-Seok;Kim, Dae-Chun;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.279-286
    • /
    • 2012
  • Purpose: This study has been conducted to investigate the applicability of motion analysis of tillage blade for estimation of tillage characteristics of crank-type and rotary-type rotavators. Methods: The interrelation between tillage traces from motion analysis and field test results including rotavating depth, pulverizing ratio and inversion ratio at the same work conditions were analyzed for both crank-type and rotary-type rotavators. The work conditions include working speed of prime mover tractor and PTO speed of rotavators. For the motion analysis, joint conditions of main connecting component were specified considering the actual working mechanism of rotavator. Results: There were important correlations for the trend between motion analysis and field test results. Conclusions: Although further study is needed for applying motion analysis to estimate the accurate tillage related parameters such as rotavating depth, the soil pulverizing ratio and inversion ratio, it could be used to compare the tillage characteristics of various rotavators quickly and simply.

Design of Exo-Suit for Shoulder Muscle Strength Support (어깨 근력보조를 위한 엑소수트 설계)

  • Kwang-Woo Jeon;TaeHwan Kim;SeungWoo Kim;JungJun Kim;Hyun-Joon Chung
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.110-116
    • /
    • 2023
  • In this study describes the design of Exo-suit to assist those who work in unstructured positions. The present study aimed to analyze various types of work, especially those performed in unstructured postures by heavy industry workers. Based on the motion capture analysis results, an attempt was made to develop a shoulder muscle-assistive Exo-suit capable of assisting a wearer who is working using shoulder muscles. In the present study, as the first step of developing a shoulder muscle-assistive Exo-suit, different working scenarios were simulated, and the corresponding motion data were estimated using motion capture devices. The obtained motion data were reflected in the design of the Exo-suit. The main structure of the shoulder muscle-assistive Exo-suit was made of a carbon fiber-reinforced composite to obtain the weight reduction. The shoulder muscle assistive Exo-suit was designed to fully cover the range of motion for workers working in unstructured postures.

Study on the Static/Dynamic Measurements and Structural Analysis Procedure of Wheel Loaders (휠로더의 정적/동적 실차 계측 및 강도 평가법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1303-1309
    • /
    • 2003
  • This paper presents the static and dynamic measurements for the strength and motion characteristics as well as the improved procedures to assess strength of wheel loaders. Two scenarios for static measurement were decided by which cylinder was actuating. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of the working devices and actual working motion including traveling, digging and dumping. The measured items were stresses, cylinder pressures and strokes. Stress induced by bucket working showed higher level than that by boom working. The measured cylinder speeds were relatively superior to the design speeds. Working stress histories were thought to be closer to static rather than dynamic. A fully assembled FE model was prepared for structural analysis. In this paper, a more simple method was suggested to avoid nonlinearity caused by heave of rear frame under digging forces. Also how brake affected on structural behavior and digging force was examined closely in relation with tire pressure. It was confirmed that the overall stress level of wheel loader during turning traveling with loaded bucket was far lower than the yield stress of material.

  • PDF

FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System (유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석)

  • Doh, D.H.;Sang, J.W.;Hwang, T.G.;Pyeon, Y.B.;Baek, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

Bio-mechanical Analysis of the Grapevine Cluster Thinning Task using Working Chair

  • Lee, Kyung-Suk;Kim, Hyo-Cher;Chae, Hye-Seon;Kim, Kyung-Ran;Lim, Dae-Seop
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.395-401
    • /
    • 2011
  • Objective: This study examined the effects of working chair that was developed for farmers who work in grapevine's cluster thinning. Background: Agricultural work involves some of the nation's highest occupational risk exposures. Fruit cultivation has been recognized as one of the most hazardous crops in which to work. Grapevine cluster thinning task involve activities related to the main risk factors associated with upper limb work-related musculoskeletal disorders. Method: An experiment was designed to test the working chair. Six healthy male($25.8{\pm}4.9years$) were selected as the subjects for this study. Electromyography(EMG) was used to monitor the muscles activity, and Electro-goniometer was used to measure the ranges of motions of the elbow, trunk and knee. Subjective test was also carried out to examine discomfort body parts and their pain intensity. A grapevine's working space was built for the experiment and working chair was installed on it. In order to examine the muscle activity and range of motion, subjects used to the working chair for 30 minutes for each experimental condition. Another test without working chair was also performed for comparison. %MVC was used to quantify the level of muscle activity. Results: Decreases of muscle activity was found in all leg muscles and significant decrease of muscle activity was found in left Gastrocnemius. The range of motion of the trunk and knee also decreased when working chair used. Discomfort in lower back, thigh and shank region were reduced significantly. However, in upper limbs muscle activity tended to increase in working chair compared with conventional task. Conclusion: Improvement for cushion in seat back and pan required to reduce discomfort in buttocks. Application: Overall findings verified that the working chair might help to prevent upper limb and lower back MSDs based on the current study. These results can be practically used for work improvement for the grapevine growers to prevent MSDs.

Development of Tilting Chair for Maintaining Working Position at Reclined Posture

  • Hyeong, Joon-Ho;Roh, Jong-Ryun;Park, Seong-Bin;Kim, Sayup;Chung, Kyung-Ryul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Objective: The aim of this study is to develop an office chair enabling to keep working at reclined sitting posture. Background: Sedentary workers are supposed to change the posture frequently during long hours of sitting. A reclined sitting position has been recommended to reduce disc pressure. But slumped sitting posture caused by the buttock sliding forward without any adjustment of back reclining is commonly observed. The worker seems to have tendency to change the sitting posture maintaining working condition. We assumed the reason to be their hands movement away from the working space when tilting backward. Method: Slide mechanism allowing seat to move forward was designed to maintain the hand position in working space during reclining. A prototype was manufactured and tilting motion was analyzed using motion capture system. Four experiment chairs were tested including the manufactured prototype chair and three other commercial chairs. Results: A backward movements of the hand position were 13.0mm, 101.7mm, 156.1mm and 139.3mm at the prototype chair, compared to chair B, chair C and chair D, respectively. And the movement was remarkably small at the prototype chair. Conclusion: The developed seat sliding chair allows back tilting maintaining hand position at working space. We expect the user tilting back more often than normal tilting chair during seated work. But further investigation is required to figure out the effectiveness of the developed chair using prolonged working hours. Application: The developed office chair directly affects commercialization.

Development of Measurement Method of Musculoskeletal Load for Construction Workers using Wearable Motion Recognition Sensor (웨어러블 장비를 이용한 건설 근로자 근골격계 부하 측정방안 제시)

  • Pyo, Ki-Youn;Lee, Dong-Min;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.123-124
    • /
    • 2019
  • In the labor-intensive construction site, potential threats of the musculoskeletal diseases mainly caused by various repetitive physical tasks, vulnerable environment, and the aging of the labor worker exist. However, quantitative measuring method of construction labor worker's work posture has not been improved yet. This study proposed musculoskeletal measuring method by using wearable motion recognition sensor for quantitative evaluation and analysis of working posture of construction workers. This method is expected to be used as a basic data for posture analysis and prevention construction safety accidents, as well as physical workload and labor productivity analysis by labor work type.

  • PDF

Intelligent Image Analysis System for Preventing Safety Hazards in Dangerous Working Area (작업안전 위험상황 대응을 위한 지능형 영상분석 시스템 구축에 관한 연구)

  • Jang, Hyun Song
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • To prevent safety hazards in dangerous working area, we have proposed an intelligent image analysis system. Six common patterns of safety violations of workers' are defined and its motion detection algorithms are developed for alarm to CCTV monitoring system. Developed algorithms are implemented at 195 dangerous areas such as chemical and gas treated room. The results of violated motion detection ratio by developed system shows 94.95% of true positive cases, and 0.21% of false positive cases from all 587,645 event cases in one month implementation period. In the period, it is observed that the number of safety rule violations and the following accidents are decreased.

A Computer Method for the Dynamic Analysis of a System of Rigid Bodies in Plane Motion

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a computer method for the dynamic analysis of a system of rigid bodies in plane motion. The formulation rests upon the idea of replacing a rigid body by a dynamically equivalent constrained system of particles. Newton's second law is applied to study the motion of the resulting system of particles without introducing any rotational coordinates. A velocity transformation is used to transform the equations of motion to a reduced set. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and few cut-joints constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.