• 제목/요약/키워드: Workability and strength

검색결과 663건 처리시간 0.032초

플라이애시 및 실리카흄을 사용한 고강도유동화 콘크리트의 공학적 특성에 관한 실 험적 연구 (제 2보. 경화콘크리트의 공학적 특성 검토) (An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part 2. Engineering Properties of Hardened concrete))

  • 김진만;이상수;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.84-87
    • /
    • 1995
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admisture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete. it is presented that using admixtures like flyash and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

콘크리트용 골재로써 굴패각의 활용성에 관한 실험적 연구 (An Experimental Study on the Use of Oyster Shells as Aggregate in concrete)

  • 어석홍;황규한;최덕진;박영규;홍기호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.507-512
    • /
    • 2001
  • An investigation into using Oyster Shells partially or wholly as aggregate in concrete is reported. The proportion of shells was varied with ratios of 10, 30, 50 and 100% by volume of fine and coarse aggregate. Two water/cement ratios of 0.45, 0.55 were considered and air-entraining superplasticizer was used to improve concrete workability Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, weight and density of the specimens with different proportions of Oyster Shells were also studied. Results showed that compressive and flexural strengths decreased with increase in proportion of Oyster Shells to aggregate in the reference mixes. The workability of concrete batches decreased with increase in the proportion of Oyster Shells in the mixes. The same trend was observed with density and weight of the specimens

  • PDF

강섬유보강 실리카.흄 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구 (A fundamental Study on the Workability and Engineering Properties of Steel-Fiber Reinforced Silica Fume Concrete)

  • 권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.157-162
    • /
    • 1990
  • Recently, the multistory building construction of reinforced concrete has increased year by year, trended to be high rise in the view of effective land use planning, costing down of building construction and residential conditions. For this urgent need in construction industry, research and development of workability and engineering properties of high strength concrete has been closed up as one of the big world wide problems to be solved reasonably. It is aim of this study to provide the fundamental data the workability and engineering properties of steel-fiber reinforced high strength concrete containing silica-fume and fly-ash comparing with plain concrete for the practical use and research data accumulation in the side of development of new material in the building construction.

  • PDF

무수축 고강도 콘크리트의 특성 및 현장적용 (Properties and Field Application of Non-shrinkage High Strength Concrete)

  • 조일호;성찬용
    • 한국농공학회지
    • /
    • 제42권6호
    • /
    • pp.115-121
    • /
    • 2000
  • The purpose of this research is to investigate properties and field application of non-shrinkage high strength concrete containing expansive additive. Before the field applications, several basic laboratory test are performed to evaluate the characteristics of air content, workability and strength of the concrete using calcium sulfa aluminate(CSA) expansive additive. As a result, high strength concrete using CSA expansive additive show similar workability and compressive strength to that normal concrete, and the optimum replacement ratio of them is obtained by 10% CSA expansive additive. Accordingly, it can be concluded that the use of CSA expansive additive is effective to prevent shrinkage crack and to achieve volume stability of concrete structure.

  • PDF

Lignin 화합물의 Concrete 분산성에 대한 연구 (The Effect of Lignin Compound on Dispersibility of Concrete)

  • 문정연;한기성
    • 한국세라믹학회지
    • /
    • 제13권3호
    • /
    • pp.37-42
    • /
    • 1976
  • Although the water mixed into the concrete plays the role of hydration and acquiring the necessary workability, the more portion of water acts to obtain the substantial workability rather than to complete the hydration. However, the excess amount of water causes the poor quality of concrete, therefore it is useful to add the minimum amount of water as required as to acquire the proper workability. There have been the considerable numbers of investigations in which the dispersion phenomena of strong eletrolytic high polymer compounds such as lignosulfate and some of surface activation agents were studied to utilize as the dispersion agent of concrete. In the present study, Na-lignate, dispersion properties of which has not been studied yet, were investigated with the purpose of utilizing as a dispersion agent of concrete. The microscopic observations showed a great improvement in the dispersion of cement particles, also the fluidity and compressive strength of concrete were remarkably increased with the addition of Na-lignate: The addition of Na-lignate by 0.02% showed the increase of 1.76 times and 1.27 times of slump value and flow value respectively, and the compressive strength was increased by 1.07 times.

  • PDF

콘크리트 종류에 따른 강도 및 내구성 특성 (Strength and Durability Properties by Concrete Type)

  • 이병덕;심대원;양우석;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2000
  • The optimum mix proportioning of concrete is to produce a concrete which satisfies the strength, workability and durability required with minimum component of materials. However in practice the cement content of mix proportioning in construction field is normally higher then required. In this study, the existing mix proportioning of concrete currently used in Korea Highway Corporation has been reviewed by reducing 10kg of cement content by 3~5 strength in strength and workability during the first year of this project. The optimum mix design is established based on the results of the above review and durability were examined during the second year. The experimental results though 2 year show that 103~0% of the reduction of cement content still satisfies the specified strength of concrete and produces higher durability concrete.

  • PDF

The Quality Status of Aggregate for Domestic Ready-mixed Concrete and the Effect of Aggregate Quality in Concrete

  • Kim, Yong-Ro;Lee, Jae-Hyun;Min, Choong-Siek;Park, Jong-Ho
    • 한국건축시공학회지
    • /
    • 제14권1호
    • /
    • pp.11-20
    • /
    • 2014
  • This research examined the effect of the quality of aggregate on concrete workability and compressive strength through an investigation into regional aggregate used in domestic ready mixed concrete plants. Through the research, it was found that aggregate for ready mixed concrete shows poor quality overall. The main factor of deterioration in the quality of the concrete is the particle size of fine aggregate and fine particle content in coarse aggregate. The quality of aggregate significantly influences concrete's workability, which is defined based on 0.08mm passage related with powder and absorption. In addition, poor aggregate quality leads to increased water content in concrete to secure workability, which is related with a decline in the compressive strength and durability of concrete.

대단면 터널용 고성능 콘크리트 라이닝의 개발 (Development of High Performance Concrete Tunnel Linnig with Large Dimension)

  • 차훈;이창훈;손유신;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF

섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구 (A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites)

  • 고경택;박정준;류금성;강수태;안기홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.