• Title/Summary/Keyword: Workability

Search Result 1,137, Processing Time 0.026 seconds

Properties of Mortar Using Powdered Waste Glasses (폐유리 분말을 이용한 모르타르의 특성)

  • 배수호;임병탁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.50-58
    • /
    • 2003
  • Due to the economic growth and the improvement of life standards in the country, the quantities of waste glasses have been yearly increased. About 65% of them are recycled and the rest are reclaimed. The reclaimed waste glasses can cause some problems such as the environmental pollution as well as the processing cost of them. Thus, the purpose of this experimental research is to investigate the properties of mortar using powdered waste glasses(PWG) as a cementitious materials in mortar to recycle the reclaimed waste glasses For this purpose, the workability and strength of mortar specimens using PWG have been tested and analyzed in various grain size of them by changing the replacement ratio. As a result, considering the workability and strength of mortar specimens using PWG, it is concluded that the optimum grain size and replacement ratio of them will be existing.

Hot Workability Characterization of Ti Alloys Using Dynamic Material Model (동적재료모델을 활용한 티타늄합금의 고온성형성 고찰)

  • Yeom J. T.;Hyun Y. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.301-304
    • /
    • 2001
  • Hot-compression tests were carried out to investigate the hot workability of Ti64 and Ti6246 alloys at different temperatures and strain rates. Processing maps were developed on the basis of the dynamic material model unifying the relationship among constitutive behavior, hot workability and microstructure development. Stable regions, defined on the basis of four stability criteria 0${\delta}log(m)/\frac{\bot}{\varepsilon})<0$, s<1 and ${\delta}log(s)/\frac{\bot}{\varepsilon})<0$, were found to be associated with dynamic recovery and recrystallization.

  • PDF

An Experimental Study on the Characteristics of Concrete Containing Rice Husk Ash (왕겨재를 혼입한 콘크리트의 특성에 관한 실험적 연구)

  • 배수호;윤상대;박광수;신의균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.70-76
    • /
    • 1996
  • The purpose of this study is to investigate workability and strength of concrete containing rice husk ash. For this purpose, concrete with and without rice husk ash were tested and analyzed on the workability and the characteristics fo their strength such as compressive, tensile and flexural strength according to unit weight of binder. Also, performances of rice husk ash as an admixture of concrete were compared with those of silica hume being widely used for high-strength concrete. As a result, workability and strength of rice husk ash as an admixture of concrete were analogous to those of silica hume.

  • PDF

Development of High Performance Concrete Tunnel Linnig with Large Dimension (대단면 터널용 고성능 콘크리트 라이닝의 개발)

  • Cha Hun;Lee Chang Hoon;Sohn Yu Shin;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF

Analysis of Construction RCB Exterior Wall Formwork Placing High on Nuclear Power Plant (원자력 발전소 RCB 외벽 거푸집 1단 타설 높이별 시공성 분석)

  • Song, Hyo-Min;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.205-206
    • /
    • 2014
  • It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. The purpose of this study attempts to evaluate the single-stage workability of the system given a change in the height of the setting of RCB exterior wall formwork to be used in nuclear power plant construction. As a result of this study, it is possible height of 3.5m~4m uses formwork when analyzing the construction period and material costs an increase in formwork by concrete lateral pressure, to ensure the workability of the RCB exterior wall formwork. Through this study, I want to provide as basic data for the improvement of workability and RCB shortening the construction period.

  • PDF

Tensile performance of HPFRCC depending on various water-to-binder ratios (W/B 변화에 따른 HPFRCC의 인장성능 특성)

  • Lee, Jong-Tae;Park, Yong-Jun;Kang, Byung-Hoi;Jung, Sang-Woon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.152-153
    • /
    • 2014
  • Recently, there are many research for increasing tensile strength of concrete using fiber-reinforced mortar. Especially, the research about the high ductile concrete with fiber-reinforcement which behaves strain-hardening (defined as HPFRCC) is performed while it has the drawback of decreasing workability because of interruption of fibers such as fiber-ball effect. Hence to solve this problem, as a previous research, combination of metal fiber and organic fiber was suggested. Although this research achieved favorable result of workability of HPFRCC, the research scope was concentrated on workability of the mortar. Therefore, in this research, based on the fiber-combination of previous research, the tensile properties is evaluated depending on water-to-binder ratios to obtain improved tensile performance.

  • PDF

A fundamental Study on the Workability and Engineering Properties of Steel-Fiber Reinforced Silica Fume Concrete (강섬유보강 실리카.흄 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구)

  • 권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.157-162
    • /
    • 1990
  • Recently, the multistory building construction of reinforced concrete has increased year by year, trended to be high rise in the view of effective land use planning, costing down of building construction and residential conditions. For this urgent need in construction industry, research and development of workability and engineering properties of high strength concrete has been closed up as one of the big world wide problems to be solved reasonably. It is aim of this study to provide the fundamental data the workability and engineering properties of steel-fiber reinforced high strength concrete containing silica-fume and fly-ash comparing with plain concrete for the practical use and research data accumulation in the side of development of new material in the building construction.

  • PDF

The Effects of Superplasticizers on the Engineering Properties of Plain Concrete

  • Park, Seung-Bum
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.29-43
    • /
    • 1999
  • The effects of superplasticizers on fresh and hardened concrete were investigated. The experimental program included tests on the workability and slump loss, bleeding, setting time, air content, compressive, tensile and flexural strength, permeability, shrinkage, freeze-thaw durability and creep deformation. Properties of superplasticized concrete were compared with those of conventional and base concretes. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete. They permitted a significant water reduction while maintaining the same workability. Bleeding of superplasticized concrete was much lower than that of conventional concrete of the same consistency. This indicates that the use of superplasticizers did not affect the tendency of segregation of fresh concrete. The compressive, tensile, and flexural strengths of superplasticized concrete were significantly higher than those of conventional concrete. The permeability and drying shrinkage and creep of superplasticized concrete were less than those of conventional concrete, but there were no significant differences between base and superplasticized concrete. Compared with base concrete, non-air-entrained superplasticized concrete had slightly higher freeze-thaw durability. and superplasticized concrete with an appropriate amount of entrained air Eave even better resistance to freezing and thawing.

  • PDF

Development of Staggered Grip Type Coupling for Improving the Workability in Reinforcing Bar (철근공사 작업성 향상을 위한 엇물림 그립 타입의 이음장치 개발)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Yang, Jin-Kook;Park, Seung-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.295-297
    • /
    • 2013
  • Reinforcing bar coupling method has a variety of ways including lap-splice method. However, there are problems that need to be improved in terms of constructability, economics analysis. We should be improved about the problems of the existing methods. Accordingly, this study were developed a new type of staggered grip type reinforcing bar coupling. The proposed method show the following effects than existing methods. First, this method can be reduce time through improved workability. Second, increasing safety through the slip removal. Third, improving economic efficiency by reduce the manufacturing costs.

  • PDF

The effect of limestone chemical porperties and substitution amount on mechanical properties of cement mortar (석회석 혼합재의 화학특성이 시멘트 모르타르에 미치는 영향)

  • Suh, Dong-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.163-164
    • /
    • 2022
  • Using the limestone powder as material that can substitute the clinker, it seems to get positive effect as filler and enhance workability of cement but the substitution amount and chemical properties of it can affect mechanical properties of cement. Thus, in this study, the effect limestone powder that has other properties on cement is evaluated. As a result, the workability enhancing effect was confirmed but deterioration of compressive strength was also checked. Later, with the view of workability, the experiment that the possibility of strength compensation by decreasing unit water weight of limestone powder cement is planned when the limestone powder is used.

  • PDF