• Title/Summary/Keyword: Work zone capacity estimation

Search Result 6, Processing Time 0.024 seconds

Estimation of Road Capacity at Two-Lane Freeway Work Zones Considering the Rate of Heavy Vehicles (중차량 비에 따른 편도 2차로 고속도로 공사구간 도로 용량 추정)

  • Ko, Eunjeong;Kim, Hyungjoo;Park, Shin Hyoung;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.48-61
    • /
    • 2020
  • The objective of this study is to estimate traffic capacity based on the heavy-vehicle ratio in a two-lane freeway work zone where one lane is blocked by construction. For this, closed circuit television (CCTV) video data of the freeway work zone was collected, and the congestion at an upstream point was observed. The traffic volume at a downstream point was analyzed after a bottleneck was created by the blockage due to the upstream congestion. A distribution model was estimated using observed-time headway, and the road capacity was analyzed using a goodness-of-fit test. Through this process, the general capacity and an equation for capacity based on the heavy-vehicle ratio passing through the work zone were presented. Capacity was estimated to be 1,181~1,422 passenger cars per hour per lane (pcphpl) at Yeongdong, and 1,475~1,589pcphpl at Jungbu Naeryuk. As the ratio of heavy vehicles increased, capacity gradually decreased. These findings can contribute to the proper capacity estimation and efficient traffic operation and management for two-lane freeway work zones that block one lane due to a work zone.

Estimation of Capacity at Two-Lane Freeway Work Zone Using Traffic Flow Models of Each Vehicle-Type (차종별 교통류 모형을 이용한 편도 2차로 고속도로 공사구간 용량 산정)

  • Park, Yong-Jin;Kim, Jong-Sik
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2011
  • The purpose of this study is to estimate the capacity of two-lane freeway work zone blocking one lane using traffic flow models of each vehicle-type. Firstly, three traffic flow models of three different vehicle-types were developed using the data collected from each at the beginning and the ending point of the work zone. For each model, the maximum flow rate of three vehicle-types were calculated respectively. Maximum flow rate at the work zone was recalculated using passenger car equivalent value and percentage of vehicle-type. Secondly, traffic flow model using passenger car equivalent volume data was developed using the data collected from each at the beginning and the ending point of the work zone. Maximum flow rate for the work zone was calculated along. Two values of maximum flow rates through the work zone were compared and evaluated as the capacity of the work zone. This study found that the maximum flow rate of the work zone at the beginning point was less than that at the ending point because of impedance such as lane changing behaviors before entering the work zone. The capacity of two-lane freeway work zone blocking one lane was estimated 1,800pcphpl.

Capacity of Urban Freeway Work Zones (도시 고속도로 공사구간 용량 산정)

  • Lee, Mi Ri;Kim, Do-Gyeong;Kim, Hyo-Seung;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1123-1130
    • /
    • 2013
  • This paper aims to estimate work zone base capacity by the number of lanes for urban freeway. To do this, data were collected from the field survey and the database system maintained by traffic control center, and analyzed with four different methods such as the average maximum observation flow rate, headway, regression analysis, and parameter inspection. The work zone base capacity for urban freeway is estimated based on the average maximum observation flow rate and headway method, which are more reliable methods compared to others. The average capacity is 1,650pcphpl when the design speed is 80km/h. The capacity of four lanes one-way work zones was about 1,700pcphpl, while one of 2 lanes one-way work zones was about 1,600pcphpl. The capacity reduction rates for each are 0.15 and 0.2, respectively. The smaller the number of lane is, the more base capacity is reduced. For verification of results, we estimate the capacity by simulation analysis using PARAMICS, and compare with analytical results by a statistical method. This research can be used for efficient and systemic management of work zone in the urban freeway.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections (공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근)

  • Shin, Chi-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.269-281
    • /
    • 2018
  • Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.