• Title/Summary/Keyword: Word segmentation

Search Result 135, Processing Time 0.03 seconds

Using Dynamic Programming for Word Segmentation in OCR (동적 프로그래밍을 이용한 OCR에서의 띄어쓰기 교정)

  • Park, Ho-Min;Kim, Chang-Hyun;Noh, Kyung-Mok;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.243-245
    • /
    • 2016
  • 광학 문자 인식(OCR)을 통해 문서의 글자를 인식할 때 띄어쓰기 오류가 발생한다. 본 논문에서는 이를 해결하기 위해 OCR의 후처리 과정으로 동적 프로그래밍을 이용한 분절(Segmentation) 방식의 띄어쓰기 오류 교정 시스템을 제안한다. 제안하는 시스템의 띄어쓰기 오류 교정 과정은 다음과 같다. 첫째, 띄어쓰기 오류가 있다고 분류된 어절 내의 공백을 모두 제거한다. 둘째, 공백이 제거된 문자열을 동적 프로그래밍을 이용한 분절로 입력 문자열에 대하여 가능한 모든 띄어쓰기 후보들을 찾는다. 셋째, 뉴스 기사 말뭉치와 그 말뭉치에 기반을 둔 띄어쓰기 확률 모델을 참조하여 각 후보의 띄어쓰기 확률을 계산한다. 마지막으로 띄어쓰기 후보들 중 확률이 가장 높은 후보를 교정 결과로 제시한다. 본 논문에서 제안하는 시스템을 이용하여 OCR의 띄어쓰기 오류를 해결할 수 있었다. 향후 띄어쓰기 오류 교정에 필요한 언어 규칙 등을 시스템에 추가한 띄어쓰기 교정시스템을 통하여 OCR의 최종적인 인식률을 향상에 대해 연구할 예정이다.

  • PDF

Wine Label Character Recognition in Mobile Phone Images using a Lexicon-Driven Post-Processing (사전기반 후처리를 이용한 모바일 폰 영상에서 와인 라벨 문자 인식)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Chil-Woo;Lee, Guee-Sang;Yang, Hyung-Jung;Lee, Myung-Eun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.546-550
    • /
    • 2010
  • In this paper, we propose a method for the postprocessing of cursive script recognition in Wine Label Images. The proposed method mainly consists of three steps: combination matrix generation, character combination filtering, string matching. Firstly, the combination matrix generation step detects all possible combinations from a recognition result for each of the pieces. Secondly, the unnecessary information in the combination matrix is removed by comparing with bigram of word in the lexicon. Finally, string matching step decides the identity of result as a best matched word in the lexicon based on the levenshtein distance. An experimental result shows that the recognition accuracy is 85.8%.

Relationship between Store Image Evaluation, Customer Satisfaction, and Repurchase Intention according to the Types of Internet Fashion Shopping Malls (인터넷 패션쇼핑몰 유형별 점포이미지평가와 고객만족 및 재구매의도와의 관련성에 관한 연구)

  • Kim, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.1
    • /
    • pp.50-58
    • /
    • 2008
  • This study aims to identify whether shopping malls affect customer satisfaction significantly according to the store image assessment of consumers after their purchases. This comparative study on the store image and satisfaction level according to shopping mall type is supposed to offer useful basic data for developing a niche market while establishing market segmentation strategies for internet fashion shopping malls. As a result of an empirical analysis, it was found that important standards for assessing the store image of internet fashion shopping malls include product and information service, customer service after purchase, atmosphere, convenience and reliability, and all five factors were shown to affect the satisfaction level for all general malls significantly. However, product and information service and convenience were shown not to be significantly influential to the satisfaction level for fashion specialty mall. In addition, customer satisfaction was found to affect the customers' intention to repurchase and word of mouth. Therefore, if marketing managers of internet fashion shopping malls elevate customer satisfaction by managing the store image before the customers' purchase, they can attract customers to repurchase intention and ultimately prompt a word of mouth effect.

Maximum Likelihood-based Automatic Lexicon Generation for AI Assistant-based Interaction with Mobile Devices

  • Lee, Donghyun;Park, Jae-Hyun;Kim, Kwang-Ho;Park, Jeong-Sik;Kim, Ji-Hwan;Jang, Gil-Jin;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4264-4279
    • /
    • 2017
  • In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.

Research Trend Analysis on Customer Satisfaction in Service Field Using BERTopic and LDA

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.6
    • /
    • pp.27-37
    • /
    • 2022
  • Purpose: The purpose of this study is to derive various ways to realize customer satisfaction for the development of the service industry by exploring research trends related to customer satisfaction, which is presented as an important goal in the service industry. Research design, data and methodology: To this end, 1,456 papers with English abstracts using scienceON were used for analysis. Using Python 3.7, word frequency and co-occurrence analysis were confirmed, and topics related to research trends were classified through BERTopic and LDA. Results: As a result of word frequency and co-occurrence frequency analysis, words such as quality, intention, and loyalty appeared frequently. As a result of BERTopic and LDA, 11 topics such as 'catering service' and 'brand justice' were derived. As a result of trend analysis, it was confirmed that 'brand justice' and 'internet shopping' are emerging as relatively important research topics, but CRM is less interested. Conclusions: The results of this study showed that the 7P marketing strategy is working to some extent. Therefore, it is proposed to conduct research related to acquisition of good customers through service price, customer lifetime value application, and customer segmentation that are expected to be needed for the development of the service industry.

MSFM: Multi-view Semantic Feature Fusion Model for Chinese Named Entity Recognition

  • Liu, Jingxin;Cheng, Jieren;Peng, Xin;Zhao, Zeli;Tang, Xiangyan;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1833-1848
    • /
    • 2022
  • Named entity recognition (NER) is an important basic task in the field of Natural Language Processing (NLP). Recently deep learning approaches by extracting word segmentation or character features have been proved to be effective for Chinese Named Entity Recognition (CNER). However, since this method of extracting features only focuses on extracting some of the features, it lacks textual information mining from multiple perspectives and dimensions, resulting in the model not being able to fully capture semantic features. To tackle this problem, we propose a novel Multi-view Semantic Feature Fusion Model (MSFM). The proposed model mainly consists of two core components, that is, Multi-view Semantic Feature Fusion Embedding Module (MFEM) and Multi-head Self-Attention Mechanism Module (MSAM). Specifically, the MFEM extracts character features, word boundary features, radical features, and pinyin features of Chinese characters. The acquired font shape, font sound, and font meaning features are fused to enhance the semantic information of Chinese characters with different granularities. Moreover, the MSAM is used to capture the dependencies between characters in a multi-dimensional subspace to better understand the semantic features of the context. Extensive experimental results on four benchmark datasets show that our method improves the overall performance of the CNER model.

Retrieval of Player Event in Golf Videos Using Spoken Content Analysis (음성정보 내용분석을 통한 골프 동영상에서의 선수별 이벤트 구간 검색)

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.674-679
    • /
    • 2009
  • This paper proposes a method of player event retrieval using combination of two functions: detection of player name in speech information and detection of sound event from audio information in golf videos. The system consists of indexing module and retrieval module. At the indexing time audio segmentation and noise reduction are applied to audio stream demultiplexed from the golf videos. The noise-reduced speech is then fed into speech recognizer, which outputs spoken descriptors. The player name and sound event are indexed by the spoken descriptors. At search time, text query is converted into phoneme sequences. The lists of each query term are retrieved through a description matcher to identify full and partial phrase hits. For the retrieval of the player name, this paper compares the results of word-based, phoneme-based, and hybrid approach.

A Study on Recognition Units and Methods to Align Training Data for Korean Speech Recognition) (한국어 인식을 위한 인식 단위와 학습 데이터 분류 방법에 대한 연구)

  • 황영수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • This is the study on recognition units and segmentation of phonemes. In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition unit. In this paper, we study on the proper recognition units and segmentation of phonemes for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong is established as two units, i.e. a glide plus a vowel. And recognizer using manually-aligned training data is a little superior to that using automatically-aligned training data. Also, the recognition rate of the case in which the bipbone is used as the recognition unit is better than that of the case in which the mono-Phoneme is used.

  • PDF

Medical Services Specialization strategies of the Regional Public Hospital through Customer Segmentation (고객세분화를 통한 지방의료원의 의료서비스 전문화 전략)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4641-4650
    • /
    • 2015
  • This study aims to further strengthen the medical expertise to offer specialized medical care specialization strategies to gain a competitive edge through the customer segmentation of the Regional Public Hospital. Investigation period was selected to study the inpatients 26,658 people January to December 2013. The method of analysis are Cluster analysis and Decision Tree Analysis. In conclusion, female, age over 60, and diseases in musculoskeletal system and connective tissue were commonly selected as identifiers of the target market of Regional Public Hospital. Customers in this target market are loyal to specialized medical service and keeping continuous relationship with these customers through communication and monitoring of results of provided medical service would be important because the effect of word of mouth propagated to other group of customers having equivalent scale of consumption is expected. And the concentration of the scope of medical service of Regional Public Hospital and the collaboration and mutual reliance of medical service under the strategic alliance with other institutions and private hospitals are also needed.

Implementation of the Automatic Segmentation and Labeling System (자동 음성분할 및 레이블링 시스템의 구현)

  • Sung, Jong-Mo;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1997
  • In this paper, we implement an automatic speech segmentation and labeling system which marks phone boundaries automatically for constructing the Korean speech database. We specify and implement the system based on conventional speech segmentation and labeling techniques, and also develop the graphic user interface(GUI) on Hangul $Motif^{TM}$ environment for the users to examine the automatic alignment boundaries and to refine them easily. The developed system is applied to 16kHz sampled speech, and the labeling unit is composed of 46 phoneme-like units(PLUs) and silence. The system uses both of the phonetic and orthographic transcription as input methods of linguistic information. For pattern-matching method, hidden Markov models(HMM) is employed. Each phoneme model is trained using the manually segmented 445 phonetically balanced word (PBW) database. In order to evaluate the performance of the system, we test it using another database consisting of sentence-type speech. According to our experiment, 74.7% of phoneme boundaries are within 20ms of the true boundary and 92.8% are within 40ms.

  • PDF