• Title/Summary/Keyword: Word clustering

Search Result 190, Processing Time 0.031 seconds

Enhancing Text Document Clustering Using Non-negative Matrix Factorization and WordNet

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • A classic document clustering technique may incorrectly classify documents into different clusters when documents that should belong to the same cluster do not have any shared terms. Recently, to overcome this problem, internal and external knowledge-based approaches have been used for text document clustering. However, the clustering results of these approaches are influenced by the inherent structure and the topical composition of the documents. Further, the organization of knowledge into an ontology is expensive. In this paper, we propose a new enhanced text document clustering method using non-negative matrix factorization (NMF) and WordNet. The semantic terms extracted as cluster labels by NMF can represent the inherent structure of a document cluster well. The proposed method can also improve the quality of document clustering that uses cluster labels and term weights based on term mutual information of WordNet. The experimental results demonstrate that the proposed method achieves better performance than the other text clustering methods.

Gathering Common-word and Document Reclassification to improve Accuracy of Document Clustering (문서 군집화의 정확률 향상을 위한 범용어 수집과 문서 재분류 알고리즘)

  • Shin, Joon-Choul;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.53-62
    • /
    • 2012
  • Clustering technology is used to deal efficiently with many searched documents in information retrieval system. But the accuracy of the clustering is satisfied to the requirement of only some domains. This paper proposes two methods to increase accuracy of the clustering. We define a common-word, that is frequently used but has low weight during clustering. We propose the method that automatically gathers the common-word and calculates its weight from the searched documents. From the experiments, the clustering error rates using the common-word is reduced to 34% compared with clustering using a stop-word. After generating first clusters using average link clustering from the searched documents, we propose the algorithm that reevaluates the similarity between document and clusters and reclassifies the document into more similar clusters. From the experiments using Naver JiSikIn category, the accuracy of reclassified clusters is increased to 1.81% compared with first clusters without reclassification.

Selection of Cluster Topic Words in Hierarchical Clustering using K-Means Algorithm

  • Lee Shin Won;Yi Sang Seon;An Dong Un;Chung Sung Jong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.885-889
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Hierarchical clustering improves the performance of retrieval and makes that users can understand easily. For outperforming of clustering, we implemented hierarchical structure with variety and readability, by careful selection of cluster topic words and deciding the number of clusters dynamically. It is important to select topic words because hierarchical clustering structure is summarizes result of searching. We made choice of noun word as a cluster topic word. The quality of topic words is increased $33\%$ as follows. As the topic word of each cluster, the only noun word is extracted for the top-level cluster and the used topic words for the children clusters were not reused.

  • PDF

Twitter Hashtags Clustering with Word Embedding (Word Embedding기반 Twitter 해시 태그 클러스터링)

  • Nguyen, Tien Anh;Yang, Hyung-Jeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.179-180
    • /
    • 2019
  • Nowadays, clustering algorithm is considered as a promising solution for lacking human-labeled and massive data of social media sites in numerous machine learning tasks. Many researchers propose disaster event detection systems have ability to determine special local events, such as missing people, public transport damage by clustering similar tweets and hashtags together. In this paper, we try to extend tweet hashtag feature definition by applying word embedding. The experimental results are described that word embedding achieve better performance than the reference method.

  • PDF

Korean Language Clustering using Word2Vec (Word2Vec를 이용한 한국어 단어 군집화 기법)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.25-30
    • /
    • 2018
  • Recently with the development of Internet technology, a lot of research area such as retrieval and extracting data have getting important for providing the information efficiently and quickly. Especially, the technique of analyzing and finding the semantic similar words for given korean word such as compound words or generated newly is necessary because it is not easy to catch the meaning or semantic about them. To handle of this problem, word clustering is one of the technique which is grouping the similar words of given word. In this paper, we proposed the korean language clustering technique that clusters the similar words by embedding the words using Word2Vec from the given documents.

Microblog User Geolocation by Extracting Local Words Based on Word Clustering and Wrapper Feature Selection

  • Tian, Hechan;Liu, Fenlin;Luo, Xiangyang;Zhang, Fan;Qiao, Yaqiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3972-3988
    • /
    • 2020
  • Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

Two-Phase Clustering Method Considering Mobile App Trends (모바일 앱 트렌드를 고려한 2단계 군집화 방법)

  • Heo, Jeong-Man;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose a mobile app clustering method using word clusters. Considering the quick change of mobile app trends, the proposed method divides the mobile apps into some semantically similar mobile apps by applying a clustering algorithm to the mobile app set, rather than the predefined category system. In order to alleviate the data sparseness problem in the short mobile app description texts, the proposed method additionally utilizes the unigram, the bigram, the trigram, the cluster of each word. For the purpose of accurately clustering mobile apps, the proposed method manages to avoid exceedingly small or large mobile app clusters by using the word clusters. Experimental results show that the proposed method improves 22.18% from 57.48% to 79.66% on overall accuracy by using the word clusters.

Performance Improvement of Word Clustering Using Ontology (온톨로지를 이용한 단어 군집화 성능 개선)

  • Park Eun-Jin;Kim Jae-Hoon;Ock Cheol-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.337-344
    • /
    • 2006
  • In this paper, we describe the design and the implementation of word clustering system using a definition of an entry word in the dictionary, called a dictionary definition. Generally word clustering needs various features like words and the performance of a system for the word clustering depends on using some kinds of features. Dictionary definition describes the meaning of an entry in detail, but words in the dictionary definition are implicative or abstractive, and then its length is not long. The word clustering using only features extracted from the dictionary definition results in a lots of small-size clusters. In order to make large-size clusters and improve the performance, we need to transform the features into more general words with keeping the original meaning of the dictionary definition as intact as possible. In this paper, we propose two methods for extending the dictionary definition using ontology. One is to extend the dictionary definition to parent words on the ontology and the other is to extend the dictionary definition to some words in fixed depth from the root of the ontology. Through our experiments, we have observed that the proposed systems outperform that without extending features, and the latter's extending method overtakes the former's extending method in performance. We have also observed that verbs are very useful in extending features in the case of word clustering.

Hierarchical Structure in Semantic Networks of Japanese Word Associations

  • Miyake, Maki;Joyce, Terry;Jung, Jae-Young;Akama, Hiroyuki
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.321-329
    • /
    • 2007
  • This paper reports on the application of network analysis approaches to investigate the characteristics of graph representations of Japanese word associations. Two semantic networks are constructed from two separate Japanese word association databases. The basic statistical features of the networks indicate that they have scale-free and small-world properties and that they exhibit hierarchical organization. A graph clustering method is also applied to the networks with the objective of generating hierarchical structures within the semantic networks. The method is shown to be an efficient tool for analyzing large-scale structures within corpora. As a utilization of the network clustering results, we briefly introduce two web-based applications: the first is a search system that highlights various possible relations between words according to association type, while the second is to present the hierarchical architecture of a semantic network. The systems realize dynamic representations of network structures based on the relationships between words and concepts.

  • PDF