• Title/Summary/Keyword: Word cloud analysis

Search Result 153, Processing Time 0.029 seconds

Analysis of Smart Factory Research Trends Based on Big Data Analysis (빅데이터 분석을 활용한 스마트팩토리 연구 동향 분석)

  • Lee, Eun-Ji;Cho, Chul-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.551-567
    • /
    • 2021
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on smart factories by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on smart factories. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "SMART FACTORY" and "Smart Factory" as search terms, and the titles and Korean abstracts were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, 739 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; Smart factory research slowed down from 2005 to 2014, but until 2019, research increased rapidly. According to the analysis by fields, smart factories were studied in the order of engineering, social science, and complex science. There were many 'engineering' fields in the early stages of smart factories, and research was expanded to 'social science'. In particular, since 2015, it has been studied in various disciplines such as 'complex studies'. Overall, in keyword analysis, the keywords such as 'technology', 'data', and 'analysis' are most likely to appear, and it was analyzed that there were some differences by fields and years. Conclusion: Government support and expert support for smart factories should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to smart factories. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

The Influence of Social Factors of Acceptance of Cloud Services on Consumer Usage Intentions (클라우드 서비스의 수용 관련 사회적 요인이 소비자의 이용의도에 미치는 영향)

  • Chen, Yu-Fei;Nie, Xin-Yu;Quan, Dong-mei
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.173-178
    • /
    • 2022
  • With the development of information technology, the popularization of 5G and cloud computing has accelerated the circulation and digital transformation of information. In the network information society where information is rapidly increasing, it is very important to have the ability to manage and collect the required information. In particular, the information storage and management functions of cloud services are widely used among young people. This research takes the social factors of accepting cloud services as the breakthrough point, and takes young consumers aged 20-30 as the survey object, and designs a research model according to the development of cloud computing technology. The findings verify the influence of social factors on cloud service acceptance and 20-30-year-old consumers' intention to use cloud services. The partial and complete mediating effects of perceived ease of use were verified from the influence relationship between social factors and exploitation intention. Finally, this study provides inspiration for the development direction of cloud computing technology through empirical analysis.

A Preliminary Study on Change Management Factors through Analysing Development Phase of Construction IT System (건설 IT 시스템 발전단계분석을 통한 변화관리 요인 기초 연구)

  • Kim, Haneol;Lee, Dongheon;Lim, Hyoungchul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.214-215
    • /
    • 2022
  • This study analyzed the development stage and change management necessity of the construction IT system through existing research and literature review, and used WordCloud, one of the text mining techniques, to analyze current construction trends and major issues. The necessity of change management is derived by using existing research literature and construction-related social issues as analysis data.

  • PDF

Analysis of Domestic Research on Depression and Stress : Focused on the Treatment and Subjects (우울과 스트레스에 관한 국내 연구 분석 : 치료와 대상자를 중심으로)

  • Jo, Nam-Hee;Na, Eun-Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.53-59
    • /
    • 2017
  • This study was attempted to identify the domestic research related to depression and stress. The subjects of the analysis were 1,875 college degree theses thrown in the National Assembly Library searched by the depression and stress keyword as of November 30, 2016. The analysis method visualizes atypical data with Word Cloud, which is one of the text mining techniques. We also used the R'LDA package and LDA to classify treatment and subjects. As a result of the analysis, 233(12.4%) of the total papers with therapeutic keywords were found. Application of treatment methods was art therapy, music therapy, horticultural therapy, cognitive behavior therapy, clinical art therapy, cognitive therapy, psychological therapy, depression treatment, group therapy, laughter treatment sequence. The study subjects were adolescents, elderly, patient, mother, child, female, parents, and college students in order. The results of LDA topic analysis for adolescents were classified into four topics: self-support, treatment program, relationship effect, and variable study.

A Study on the Use of Stopword Corpus for Cleansing Unstructured Text Data (비정형 텍스트 데이터 정제를 위한 불용어 코퍼스의 활용에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.891-897
    • /
    • 2022
  • In big data analysis, raw text data mostly exists in various unstructured data forms, so it becomes a structured data form that can be analyzed only after undergoing heuristic pre-processing and computer post-processing cleansing. Therefore, in this study, unnecessary elements are purified through pre-processing of the collected raw data in order to apply the wordcloud of R program, which is one of the text data analysis techniques, and stopwords are removed in the post-processing process. Then, a case study of wordcloud analysis was conducted, which calculates the frequency of occurrence of words and expresses words with high frequency as key issues. In this study, to improve the problems of the "nested stopword source code" method, which is the existing stopword processing method, using the word cloud technique of R, we propose the use of "general stopword corpus" and "user-defined stopword corpus" and conduct case analysis. The advantages and disadvantages of the proposed "unstructured data cleansing process model" are comparatively verified and presented, and the practical application of word cloud visualization analysis using the "proposed external corpus cleansing technique" is presented.

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

Analysis of News Regarding New Southeastern Airport Using Text Mining Techniques (텍스트 마이닝 기법을 활용한 동남권 신공항 신문기사 분석)

  • Han, Mu Moung Cho;Kim, Yang Sok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Social issues are important factors that decide government policy and newspapers are critical channels that reflect them. Analysing news articles can contribute to understanding social issues, but it is very difficult to analyse the unstructured large volumes of news data manually. Therefore, this study aims to analyze the different views among stakeholders of a specific social issue by using text analysis, word cloud analysis and associative analysis methods, which systematically transform unstructured news data into structured one. We analyzed a total of 115 news articles and a total of 6,772 comments, collected from the selected newspapers (Chosun-Il-bo, Joongang-Il-bo, Donga-Il-bo, Maeil Newspaper, Busan-Il-bo) for two weeks. We found that there are significant differences in tone between newspapers. While nation-wide daily newspapers focus on political relations with local areas, local daily newspapers tend to write articles to represent local governments' interests.

Analysis of Social Media Utilization based on Big Data-Focusing on the Chinese Government Weibo

  • Li, Xiang;Guo, Xiaoqin;Kim, Soo Kyun;Lee, Hyukku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2571-2586
    • /
    • 2022
  • The rapid popularity of government social media has generated huge amounts of text data, and the analysis of these data has gradually become the focus of digital government research. This study uses Python language to analyze the big data of the Chinese provincial government Weibo. First, this study uses a web crawler approach to collect and statistically describe over 360,000 data from 31 provincial government microblogs in China, covering the period from January 2018 to April 2022. Second, a word separation engine is constructed and these text data are analyzed using word cloud word frequencies as well as semantic relationships. Finally, the text data were analyzed for sentiment using natural language processing methods, and the text topics were studied using LDA algorithm. The results of this study show that, first, the number and scale of posts on the Chinese government Weibo have grown rapidly. Second, government Weibo has certain social attributes, and the epidemics, people's livelihood, and services have become the focus of government Weibo. Third, the contents of government Weibo account for more than 30% of negative sentiments. The classified topics show that the epidemics and epidemic prevention and control overshadowed the other topics, which inhibits the diversification of government Weibo.

Analysis on the English Translation of The First Chosen Educational Ordinance, Manual of Education of Koreans (1913), and Manual of Education in Chosen 1920 (1920) Using Text Mining Analytics (텍스트 마이닝(Text mining) 기법을 활용한 『제1차조선교육령』과 『조선교육요람』(1913, 1920)의영어번역본 분석)

  • Jinyoung Tak;Eunjoo Kwak;Silo Chin;Minjoo Shon;Dongmie Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.309-317
    • /
    • 2023
  • The purpose of this paper is to investigate how Japan tried to dominate Chosen through educational policies by analyzing three official English texts published by the Japanese Government-General of Korea: the First Chosen Educational Ordinance declared in 1911, the Manual of Education of Koreans(1913), and the Manual of Education in Chosen 1920(1920). In order to pursue this purpose, the present study carried a corpus-based diachronic analysis, rather then a qualitative analysis. Facilitating text analytics such as Word Cloud and CONCOR, this paper derived the following results: First, the first Chosen Educational Ordinance(1911) includes overall educational regulations, curriculum, and operations of schools. Second, the Manual of Education of Koreans(1913) contains the educational medium and contents on how to educate. Finally, it can be proposed that the Manual of Education in Chosen 1920(1920) contains specific implementation of education and the subject of education.

Parents' Perceptions of Cognitive Rehabilitation for Children With Developmental Disabilities: A Mixed-Method Approach of Phenomenological Methodology and Word Cloud Analysis (발달장애 아동 부모의 인지재활 경험에 대한 질적 연구: 워드 클라우드 분석과 현상학적 연구 방법 혼합설계)

  • Ju, Yu-Mi;Kim, Young-Geun;Lee, Hee-Ryoung;Hong, Seung-Pyo;Han, Dae-Sung
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.49-63
    • /
    • 2024
  • Objective : The purpose of this study was to investigate parental perspectives on cognitive rehabilitation using a combination of phenomenological research methodology and word cloud analysis. Methods : Interviews were conducted with five parents of children with developmental disabilities. Word cloud analysis was conducted using Python, and five researchers analyzed the meaning units and themes using phenomenological methods. Words with high frequency were considered as a heuristic tool. Results : A total of 43 meaning units and nine components related to the phenomenon of cognitive rehabilitation were derived, and three themes were finalized. The main themes encompassed the definition of cognitive rehabilitation, challenges associated with cognitive rehabilitation, and factors influencing the selection of a cognitive rehabilitation institute. Cognitive rehabilitation emerged as a treatment focused on improving learning, daily functioning, and cognitive abilities in children with developmental disabilities. The perceived issues with cognitive rehabilitation pertained to treatment methods, therapist expertise, and associated costs. In addition, parents highlighted the importance of therapist expertise, humane personality, and affordability of cost and schedule when choosing a cognitive rehabilitation institute. Conclusion : Parents expressed expectations for substantial improvements in their children's daily functioning through cognitive rehabilitation. However, challenges were identified in clinical practices. Going forward, we expect that cognitive rehabilitation will evolve into a better therapeutic support service addressing the concerns raised by parents.