In this paper, to improve the accuracy of long sentence similarity calculation, we proposed a sentence similarity calculation method based on a system similarity function. The algorithm uses word2vector as the system elements to calculate the sentence similarity. The higher accuracy of our algorithm is derived from two characteristics: one is the negative effect of penalty item, and the other is that sentence similar function (SSF) based on word2vector similar elements doesn't satisfy the exchange rule. In later studies, we found the time complexity of our algorithm depends on the process of calculating similar elements, so we build an index of potentially similar elements when training the word vector process. Finally, the experimental results show that our algorithm has higher accuracy than the word mover's distance (WMD), and has the least query time of three calculation methods of SSF.
Annual Conference on Human and Language Technology
/
2004.10d
/
pp.106-111
/
2004
사람의 언어를 이해하는 자연언어처리 시스템을 개발하기 위해서는 의미처리를 위한 지식 베이스(knowledge base)가 필요하다. 지금까지 사람이 가진 지식 베이스를 컴퓨터에 도입하려는 많은 노력을 기울이고 있고 그 결과물로 온톨로지(ontology)와 시소러스(thesaurus)가 만들어지고 있다. 외국에서는 지식 베이스의 중요성을 알고 많은 연구를 수행하고 있으며 그 대표적인 사례들에는 Roget's Thesaurus, WordNet, EDR 개념사전, CYC, Euro WordNet 등이 있다. 이 중에서 가장 대표적이며 많은 활용을 보이는 것이 Princeton 대학의 WordNet이다. WordNet은 인간의 어휘지식에 대한 심리 언어학적인 연구의 결과물로써 심리학자와 언어학자들에 의해 10여 년 동안 구축되고 있는 영어에 대한 어휘데이터베이스이다. 본 논문에서는 WordNet을 기반으로 명사에 대해서 영한사전과 국어사전을 이용하여 구축한 한국어 워드넷을 소개하구 구축시 고려한 기본지침을 소개하도록 하겠다.
Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.394-395
/
2016
워드 임베딩(word embedding)은 정보검색이나 기계학습에서 단어를 표현하기 위하여 사용되던 기존의 one-hot 벡터 방식의 희소공간 및 단어들 간의 관계정보를 유지할 수 없는 문제를 해결하기 위한 방법이다. 워드 임베딩의 한 방법으로 word2vec은 최근 빠른 학습시간과 높은 효과를 얻을 수 있는 모델로 주목을 받고 있다. word2vec은 수행 시 주어지는 옵션인 벡터차원과 문맥크기에 의해 그 결과 품질이 상이하다. Mikolov는 구글 뉴스 문헌 집합에 대하여 word2vec을 실험하고, 적합한 옵션을 제시하였다. 본 논문에서는 구글 뉴스 문헌 같은 일반 문서가 아닌 생의학 분야에 특화된 문헌에 대하여 word2vec에 대한 다양한 옵션을 실험하고, 생의학 문헌에 적합한 최적의 조건을 분석한다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.67-71
/
2016
본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.
The purposes of this study are (1) to investigate the correlation between English word-final stop and the duration of vowels before word-final stop and (2) to suggest a way to detect pronunciation errors and teach the pronunciation of English word-final stops. For these purposes, 18 Korean speakers' production was recorded and analysed using Speech Analyzer and their production was compared with that of native English speakers. In addition, two native English speakers evaluated the subjects' pronunciation. The major findings are the voicing dependent effect of the English vowels produced by native Korean speakers is lower than that of native English speakers; Korean speakers release English word-final stops less than native English speakers; and the pronunciation of English word-final stops and the duration of adjacent vowels are closely related in that the pronunciation score of final stops and the ratio of vowels between the vowels before voiced stops and voiceless stops are correlated. In addition, this study concludes with pedagogical suggestions that may be useful for English pronunciation teaching.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.263-266
/
2019
단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.
The study investigated how 'word of mouth' originates in the chain restaurant industry. It has long been acknowledged that 'word of mouth' is a critical factor for the success of a restaurant business due to its targetability and cost effectiveness. A review of the literature revealed four antecedents of 'word of mouth': service quality, perceived value, satisfaction, and relationship quality. Based on the theoretical/empirical relationships between those constructs, a structural model composed of the hypotheses was proposed. The structural model was tested with data collected from 471 chain restaurant patrons. The structural equation modeling analysis revealed that five constructs in the proposed model are interrelated, and during this process, word of mouth is formed in the chain restaurant industry. A positive relationship between service quality and satisfaction (0.265, p<0.05), service quality and perceived value (0.831, p<0.05), service quality and relationship quality (0.465, p< 0.05), and service quality and WOM (0.263, p< 0.05) were found, indicating that service quality is a key prerequisite for word of mouth and other constructs proposed in the model. It was revealed that perceived value doe not have a direct impact on WOM formation (t=1.275, p=0.202), but a positive relationship between perceived value and satisfaction (0.293, p<0.05) and between satisfaction and WOM (0.627, p< 0.05) were found. Therefore, it was concluded that patrons' perceived value influences word of mouth formation, but that impact is mediated by satisfaction. During this process, relationship quality also plays a mediating role in generating word of mouth. Based on data analysis, theoretical/managerial implications are discussed.
This study investigated global and local characteristics of eye movement while 16 college students read 48 easy Korean sentences. It was found that readers lusted for about 225ms at the word cluster(eojeol), made a forward saccade of about 3.6 characters to the next word, skipped short and high-frequent words about 25% during the first-pass reading, and regressed backward at 19%. There were also individual differences in readers' pattern of fixation and saccade. In addition, the effects of word cluster length and word frequency and the effects related to landing position were examined. The eyes landed on the center of a word cluster more frequently than on the boundaries. When the eyes landed at the boundaries, the eyes fixated the word cluster again more frequently. The word clusters with high-frequency words were read faster than those with low-frequency words.
Objectives : The paper raises an objection to the word '涕' being used to refer to nasal discharge, and proposes a word for nasal discharge upon studying a set of medical books. Methods : The author finds and confirms the dictionary definition of '涕' and studies how they are used differently in medical books. Through this study, the author shows how the word '涕' is used incorrectly and makes deductions for its reason. The author takes a look at the old form of the word '涕', its etymological origin, takes a guess as to the real word that should have been used to refer to nasal discharge, and find examples of instances where this correct word for nasal discharge are more appropriate. Results & Conclusions : In medical books such as Huangdineijing Suwen, '涕' is used to mean nasal discharge, but the word's dictionary definition does not validate such usage. Yugunryeombu (劉君廉夫), in its commentary for Somun, used '?' and '鼻夷' for '涕', and '?' means nasal discharge and used as same as '涕' when its used to mean tear. This is a phenomenon that originated from '弟' and '夷' being used interchangeably which led to the incorrect usage of '?'. If someone were to refer to nasal discharge, he needs to use '?'. '鼻夷' is believed to be the same word as '弟鼻', which is the old form of '?', and it means both tear(pronounced 'Che') and nasal discharge(pronounced 'Je'). However, the pronunciation different between 'Che' and 'Je', and its definition as tear, is divided in later periods into '涕' following the shape of '弟'. Following the shape of '夷', the meaning of nasal discharge remains in '?' while retaining the pronunciation of 'yi'. Therefore, the word '涕' used to mean nasal discharge is an incorrect form of '?', and should all be re-written to '?'.
In this paper, we propose a novel approach to improve the performance of the Convolutional Neural Network(CNN) word embedding model on top of word2vec with the result of performing like doc2vec in conducting a document classification task. The Word Piece Model(WPM) is empirically proven to outperform other tokenization methods such as the phrase unit, a part-of-speech tagger with substantial experimental evidence (classification rate: 79.5%). Further, we conducted an experiment to classify ten categories of news articles written in Korean by feeding words and document vectors generated by an application of WPM to the baseline and the proposed model. From the results of the experiment, we report the model we proposed showed a higher classification rate (89.88%) than its counterpart model (86.89%), achieving a 22.80% improvement. Throughout this research, it is demonstrated that applying doc2vec in the document classification task yields more effective results because doc2vec generates similar document vector representation for documents belonging to the same category.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.