• Title/Summary/Keyword: Wooden Materials

Search Result 293, Processing Time 0.019 seconds

Identification of Sapstain Fungi on Weathered Wooden Surfaces of Buildings at Jangheung and Jeju Island

  • YUN, Jeonghee;SHIN, Hee Chang;HWANG, Won Joung;YOON, Sae-Min;KIM, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.591-601
    • /
    • 2021
  • Recently it is trend to increase wood use as carbon neutral materials, there is recognized to need necessarily durability improvement of wooden building. It is very rare to report existing on the identification of isolates causing discoloration in domestic weathered wooden building used for long period. The objective of this study was identification of fungi that cause discoloration on the exteriors of weathered domestic wooden buildings in the southern part of South Korea. Our findings can be helpful to establish protection technology for weather deterioration of domestic wooden buildings. Wood chip samples presumed to be contaminated with sapstain fungi were collected from the surface of wooden members used in wooden buildings at Jangheung, Jeollanam-do (two locations, #13 and #14), and Jeju Island (two locations, #31 and #33). The growth of microorganisms was confirmed by performing culture tests for the collected samples, and fungi were isolated, purified, and identified. The results indicated that the fungal strains isolated from wooden buildings #13 and #14 at Jangheung, Jeollanam-do, were 99.83% and 100% homologous to Aureobasidium melanogenum, respectively. For wooden building #31 at Jeju Island (two locations), the fungal strain isolated was 100% homologous to A. melanogenum, which is the same species isolated from the wooden buildings at Jangheung. The fungal strain isolated from wooden building #33 (Jeju Island) had 99.83% homology with A. pullulans, which is commonly found in wood degraded by weather or ultraviolet rays. Our findings can be utilized as a basis for establishing protection technology in domestic wooden buildings.

A Case of Wooden Foreign Body Misinterpreted as Facial Abscess and Osteitis (안면부 농양 및 골염으로 오인된 나무 이물 1례)

  • Kim Eun-Seo;Kim Young-Chul;Kim Sok-Chon;Hong Seok-Chan
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.2
    • /
    • pp.235-237
    • /
    • 2000
  • It is difficult to find the penetrating foreign bodies in the head and neck area only with history taking and physical examinations. One of the most important things is to detect the precise location of foreign bodies or possibly remained materials. The detection of wooden foreign bodies is important because they can cause phlegmon formation and because wood is often contaminated by Clostridium tetani bacteria. CT has proved to be an expedient method for detecting foreign bodies of various materials in soft tissues, but the wooden foreign body is often misinterpreted as a gas bubble in soft tissue. We have experienced a case of wooden foreign body which has penetrated through nasal dorsum and remained for 4 months. It had been initially misinterpreted as longstanding inflammatory lesion and osteitis of maxilla and nasal bone.

  • PDF

3D Implementation of Wooden Structure System in Korea Traditional Wooden Building (전통목조건축물 내부 구조의 3D 구현)

  • Lee, Kang-Hun;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.332-340
    • /
    • 2010
  • This paper presents the digitally implementable methods to preserve and restore the traditional wooden buildings, which are the typical "Korean Cultural Contents," by using computer and multimedia technologies. We first define the meaning of the digital implementation of Korean traditional wooden buildings and important points to be considered. In addition, we present the steps and methods for implementation. Furthermore, we considered wooden materials, structures and Danchung (patterns of paintings on the wooden pieces) in implementing of Gongpo (wooden structure system) for both Geunjeongjeon of Gyeongbok Palace and Injungjeon of Changduk Palace by using the presented methods. We present the mechanical method to digitally implement wooden buildings by using numerical ratios of Gongpo. The other advantage of this paper over the other studies, which focus on implementation of exterior of wooden buildings, is presenting the methods how to show the complicated relations of inner parts in Korea wooden buildings. Thus, it can be practically used in preserving and restoring Korean traditional wooden buildings.

Investigation of Wood Species and Conservation Status of Wooden Seated Amitabha Buddha Triad and Wooden Amitabha Buddha Altarpiece of Yongmunsa Temple, Yecheon, Korea (Treasure)

  • CHOI, Jaewan;PARK, Junghae;KIM, Soochul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.193-217
    • /
    • 2022
  • The Wooden Seated Amitabha Buddha Triad and Altarpiece have not been the subjects of definitive species identification and scientific analysis. In this study, visual investigation, portable X-ray fluorescence (p-XRF), species identification, and lacquer layer observations were carried out to determine the original materials and conservation status. Cracks, exfoliation and discoloration were detected during the visual investigation. The p-XRF data indicated that chrome oxide green, malachite, gold, cadmium red, cinnabar, minium, hematite, lead white, ink stick (Carbon), and copper were used for pigments and the coronet accessory. Tilia spp., Abies spp., and Pinus spp. were identified from both the Buddha Triad and Altarpiece. Finally, lacquer layer analyses of the base layer, lacquer layer, orange pigment layer, and gold leaf layer observed modern synthetic pigments likely used in previous conservation. As the Korean Cultural Heritage Charter and the International Charter for the Conservation and Restoration of Monuments and Sites clearly state that objects of cultural heritage must be conserved using their original materials, future conservation of these objects should utilize the data obtained in this study to employ traditional materials. Furthermore, a deterioration map diagnosis can be applied together with the obtained analysis data to understand the conservation status of and inform an appropriate and authentic conservation treatment for the Buddha Triad and Altarpiece.

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

A Study on the Repair Method and the Damage Status of Wooden Architectural Heritages - Focused on the wooden architectural heritages in Jecheon - (목조 건축문화재의 훼손현황과 보수방안 연구 - 제천시 목조 건축문화재를 중심으로 -)

  • Lee, Wan-Geon
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.3
    • /
    • pp.82-89
    • /
    • 2016
  • This study investigated the preservation status of wooden architectural heritages, designated as Chungcheongbuk-do designated heritage in Jecheon. The purpose of this paper is to find the damage cause and the preservation method of wooden architectural heritages. It was conducted using the research methods of the existing literature and field survey to compare a current status of wooden architectural heritages. The result are as followings. Firstly, it was found the problems of a break, a damage, etc. in the platform and the problems of a cracking, an exfoliation, a corrosion, a warp, etc. in the wall. And, it was found a cracking of the beam(梁) and a roof tile(瓦), a falling of Angto(仰土), a sagging roof, etc. in the roof. Secondly, the damage causes of wooden architectural heritages were mostly caused by the physical limitations of the materials. And, it was caused by a rainwater, a subsidence of ground settlement, a destruction of waterproof membrane, etc. Lastly, the repair methods are making a quicklime layer in the soil mound on a cracking and an exfoliation part, a resin treatment or strut operation on a corrosion part of column, etc.

A Study on the Techniques of Composite Mold Structure for Hovercraft Using New Material System

  • Kim, Yun-Hae;Bae, Chang-Won;Park, Keun-Sil;Bae, Sung-Youl;Moon, Kyung-Man;Lee, Sung-Yul;Jo, Young-Dae;Kang, Byung-Yun
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.699-703
    • /
    • 2008
  • Fiber reinforced plastics (FRP) have been widely used because of their high specific strength, high specific stiffness and etc. Although these kinds of FRP have various merits in applications, it has been had one of the complicated problems to manufacture their wooden mold. For these reasons, the simple methods to manufacture the mold required in the FRP industries. To improve these kinds of problems, the molding system using composite materials was developed. By this new manufacturing techniques and high functional FRP composite mold was built. Comparing with wooden mold, the process efficiencies of frame manufacturing process and inner mold manufacturing process were improved approximately 40% and 70%, respectively.

A Study on the Development of Ship Building for the Wooden Canoe by Piling-up Laminated Wooden Plates Kit [1] - A Design for canoe hull and laminating wooden plates for piling-up kit - (적층식 평판 키트형 카누 건조 기술 개발에 관한 연구 [1] - 카누 선체의 설계 및 적층식 평판 키트 분할 기법 -)

  • Kim, Heui-Jung;Kim, Shung-Hyun;Jeong, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.762-769
    • /
    • 2009
  • A canoe is one of the most popular boats in leisure on the water. Generally canoe has been built by good wooden strips. And canoe built by FRP is used for business recently. But by the users' demands for good quality and the restriction to environmental pollution the wooden canoes are required for personal and canoe building business. The modern wooden canoes were built by the strip construction method are used typically. However it is not suitable for the mass productivity requires effective resource operations and managements of men, materials, times, and price. On this paper the new construction method, called the piling-up laminated construction method, is studied to building a canoe using the piling-up with the laminated wooden plates gives more productivity than the others. First a canoe with various curved surfaces is designed from 3D design system. And the hull of canoe model is divided horizontally to generating the laminated plates that will be converting real wooden plates available from the market and will be routed by the manufacturing machine. After the simulating and analyzing of piling-up with the laminated plates, the canoe is building with less times, less men, less resources, and lower price than other method, avoid of the requirements of additional building tools. On the next paper the constructing of a real canoe using the manufactured wooden plates will be studied.

A Study on the Restoration of the Wangheungsa Temple's Wooden Pagoda (왕흥사 목탑의 복원 연구)

  • Kim, Kyeong-Pyo;Sung, Sang-Mo
    • Journal of architectural history
    • /
    • v.19 no.3
    • /
    • pp.7-29
    • /
    • 2010
  • The form of the Wangheungsa Temple's wooden pagoda site is that of the traditional form of the wooden pagodas constructed during the Baekjae Period. Likewise, it is an important ruin for conducting research on the form and type of the wooden pagodas constructed during the Baekjae Period. In particular, the method used for the installation of the central pillar's cornerstone is a new technique. The purpose of this research is to restore the ruin of the Wangheungsa Temple's wooden pagoda of the Baekjae Period that remains at the Wangheungsa Temple's wooden pagoda site. Until now, research conducted on the wooden pagoda took place mostly centered on the Hwangryongsa Temple's wooden pagoda. Meanwhile, the reality concerning Baekjae's wooden pagoda is one in which there were not many parallel cases pertain to the design for restoration. This research paper wants to conduct academic examination of the Wangheungsa Temple's wooden pagoda to organize the intention of design and design process in a simple manner. This research included review of the Baekjae Period's wooden pagoda related ruins and the review of the existing wooden pagoda ruin to analyze the wooden pagoda construction technique of the era. Then, current status of the Wangheungsa Temple's wooden pagoda site is identified to define the characteristics of the wooden pagoda, and to set up the layout format and the measure to estimate the size of the wooden pagoda in order to design each part. Ultimately, techniques and formats used for the restoration of the wooden pagoda were aligned with the wooden pagoda of the Baekjae Period. Basically, conditions that can be traced from the current status of the Wangheungsa Temple site excavation using the primary standards as the standard. Wangheungsa Temple's wooden pagoda was designed into the wooden pagoda of the Baekjae's prosperity phase. The plane was formed into $3{\times}3$ compartments to design into three tier pagoda. The height was decided by factoring in the distance between the East-West corridors, size of the compartment in the middle, and the view that is visible from above the terrace when entering into the waterway. Basically, the origin of the wooden structure format is based on the Goguryeo style, but also the linkage with China's southern regional styles and Japan's ancient wooden pagoda methods was factored in. As for the format of the central pillar, it looks as if the column that was erected after digging the ground was used when setting up the columns in the beginning. During the actual construction work of the wooden pagoda, central pillar looks as if it was erected by setting up the cornerstone on the ground. The reason that the reclaimed part of pillar that use the underground central cornerstone as the support was not utilized, was because the Eccentric Load of the central pillar's cornerstone was factored in the state of the layers of soil piled up one layer at a time that is repeated with the yellow clay and sandy clay and the yellow clay that were formed separately with the $80cm{\times}80cm$ angle at the upper part of the central pillar's cornerstone was factored in as well. Thus, it was presumed that the central pillar was erected in the actual design using the ground style format. It is possible to presume the cases in which the reclaimed part of pillar were used when constructed for the first time, but in which central pillar was installed later on, after the supplementary materials of the underground column is corroded. In this case, however, technique in which soil is piled up one layer at a time to lay down the foundation of a building structure cannot be the method used in that period, and the reclamation cannot fill up using the $80cm{\times}80cm$ angle. Thus, it was presumed that the layers of soil for building structure's foundation was solidified properly on top of the central pillar's cornerstone when the first wooden pagoda construction work was taking place, and that the ground style central pillar was erected on its upper part by placing the cornerstone once again. Wangheungsa Temple's wooden pagoda is significant from the structure development aspect of the Korean wooden pagodas along with the Hwangryongsa Temple's wooden pagoda. Wangheungsa Temple's wooden pagoda construction technique which was developed during the prosperity phase of the Baekjae Period is presumed to have served as a role model for the construction of the Iksan Mireuksa Temple's wooden pagoda and Hwangryongsa Temple's wooden pagoda. With the plan to complement the work further by excavating more, the basic wooden pagoda model was set up for this research. Wangheungsa Temple's wooden pagoda was constructed as at the Baekjae Kingdom wide initiative, and it was the starting point for the construction of superb pagoda using state of the art construction techniques of the era during the Baekjae's prosperous years, amidst the utmost interest of all the Baekjae populace. Starting out from its inherent nature of enshrining Sakyamuni's ashes, it served as the model that represented the unity of all the Baekjae populace and the spirit of the Baekjae people. It interpreted these in the most mature manner on the Korean peninsula at the time.

A study on the Conservation of Historic Timber Architecture by Synthetic Resin in Korea (합성수지를 사용한 목조건조물문화재 보존처리 사례 연구 - 한국과 일본의 보존처리 사례를 중심으로 -)

  • Cho, Hyun-Jung;Kim, Wang-Jik
    • Journal of architectural history
    • /
    • v.15 no.1 s.45
    • /
    • pp.41-60
    • /
    • 2006
  • Preservation of wooden architecture by means of synthetic resin, is physical and chemical work. Synthetic resins are using for consolidation and restoration of decayed members. Since 1978, synthetic resin became useful preservation of architectural heritage in Korea. The first object was Chimgyeru of Songgwang-temple in Suncheon city. In the 1980s, have begun the care of materials for conservation on the architectural heritage, it was influenced according to authenticity of UNESCO Venice charter's principle, in 1964. In Korea, preservation of wooden architecture by means of synthetic resin that is sing many kinds of epoxies. Among the specific types of epoxies are araldite XN1023, SV427, etc. The use of synthetic resin have merits and demerits in the restoration for architectural heritage. The merit is that it is more smaller change with new members during preservation work. But the demerit is an irreversibility of the epoxy resin. In 1999, 'ICOMOS International Wood Committee' recommend contemporary materials and techniques, should be chosen and used with the greatest caution. And preservation work should reversible, as possible as technically. Therefore, should be data continous for preservation of wooden architecture by synthetic resin. Because data is very important work about a preservation of wooden architecture by synthetic resin. And should be try to think about new materials and techniques instead of synthetic resin, in the long view.

  • PDF