• Title/Summary/Keyword: Wood decomposition

Search Result 66, Processing Time 0.026 seconds

Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island

  • Oh, Han Na;Lee, Tae Kwon;Park, Jae Wan;No, Jee Hyun;Kim, Dockyu;Sul, Woo Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1670-1680
    • /
    • 2017
  • Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge on the decomposition of lignocellulose occurring in a natural environment is insufficient. We analyzed the 16S rRNA gene and metagenome to understand how the lignocellulose is decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using single molecules real-time sequencing revealed that the assembled contigs determined originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy)- and Protein families (Pfam)-based analysis showed that Proteobacteria was involved in degrading whole lignocellulose, and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrates. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass, and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.

Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production (바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Gwak, Ki-Seob;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.397-405
    • /
    • 2009
  • In this study, we investigated the potential of producing bioethanol from Liriodendron tulipifera by using oxalic acid pretreatment. Amounts of fermentable sugars, mostly xylose and glucose, in the liquid fraction (hydrolysate) was $40.22g/{\ell}$ after the biomass was pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$. Production amounts of ethanol was $8.6g/{\ell}$ from the 72 hours of simultaneous saccharification and fermentation (SSF) on solid fraction of the pretreated sample. At the same condition, when the reaction time increased to 40 minutes, $32.66g/{\ell}$ of fermentable sugars in the hydrolysate and $9.5g/{\ell}$ of ethanol was produced from the process of pretreatment and SSF. As a result of analyzing the fermentation inhibitors, such as acetic acid, 5-HMF, furfural and total phenolic compounds, as the reaction time increased, the amount of the fermentation inhibitors in the hydrolysate increased. Production of the fermentation inhibitors was more affected by initial concentration of oxalic acid rather than reaction time. $3.39{\sim}5.78g/{\ell}$ of acetic acid was produced by pretreatment with 0.013 g/g of oxalic acid, and the amount of furfural produced by decomposition of xylose was 2~3 times higher than the amount of 5-HMF produced by decomposition of glucose. All the hydrolysates contained more than $5g/{\ell}$ of total phenols considered as the degradation product of lignin. Therefore, by analyzing the amount of fermentable sugars and fermentation inhibitors in the hydrolysate, and producing ethanol from SSF of solid fraction of the pretreated sample, the biomass pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$ can be expected to produce the most ethanol.

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.

The evaluation for soil carbon sequestration with rice straw treatments in paddy fields

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Seong, Ki-Yeong;Kim, Min-Tae;Ryu, Jin-Hee;Lee, Geon Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.340-340
    • /
    • 2017
  • Rice straw is very important to maintain fertility in agricultural soil with several aspects such as carbon and nitrogen cycles in Korea. Recently, concerning about climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. Rice straw is most representative source of organic material produced in agricultural sectors. In order to evaluate changes of soil carbon treated by rice straw during cultivating rice in paddy field, we carried out to treat rice straw with 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ at $50{\times}50{\times}20cm$ blocks made of wood board, and analyze contents of fulvic acid and humic acid form, and total carbon periodically. The experiment was conducted in 2013-2016, and sampled with interval in a month. The organic material was applied to treatment blocks in 2 weeks ago in rice transplanting of each year. Total carbon in beginning time is low as $7.9g\;kg^{-1}$. The contents of total carbon with treatments of rice straw after experiment are recorded as 8.7, 11.2, 9.5, 10.5, and $10.9g\;kg^{-1}$ applied by 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$, respectively. When trend lines were calculated on changes of soil carbon in periods of experiments, The trend equations of soil carbon changes with treatments of 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ were Y=0.0015X+8.479, Y=0.073X+8.2577, Y=0.0503X+8.4477, Y=0.0822X+8.2103, and Y=0.082X+8.5736. These trends suggested several results. When rice straw was applied in cultivating paddy fields, most carbon in rice straw would be decomposed regardless the amount of rice straw in soil. We calculated sequestration rate of applied rice straw as about 0.1% per year during rice cultivation in paddy fields. It means that if farmer want to increase 1% soil organic matter by using application of rice straw returned after cultivation, famer should apply rice straw continuously for ten years. The change of soil carbon as fulvic acid, humic acid, and humane is showed that only content of carbon as mumine is increased significantly while fulvic acid and humic acid were changed in range of 10 to 30% among total carbon in soil. In conclusion, to sequestrate soil carbon with rice straw, it is important for rice straw to apply continuously every year. The amount of rice straw applied is not much effected to increase soil organic matter.

  • PDF

Emission Factors of Chemical Substances and the Abatement Policies in Korea Industries (화학물질 배출량 변동 요인과 배출저감 정책의 조합)

  • Rhee, Hae-Chun
    • Environmental and Resource Economics Review
    • /
    • v.18 no.4
    • /
    • pp.653-693
    • /
    • 2009
  • Using the Korean environmental input output analysis, this paper provides the emission intensities of the chemicals, especially, the toxic and carcinogenic substances, by linking the structure of demand, and the policy mix to abate these substances emissions. Acording to the results, Industries with the highest total emission intensities(TEI) of toxic substances are ranked : Printing and reproduction of recorded media(21), Other transportation equipment(26), Pulp and paper(11), Leather and fur products(9), Fiber yarn and fabrics(7). And the highest TEI of carcinogenic substances are Wood and wooden products(10), Motor vehicles and parts(25), Plastic and rubber products(15), Audio, video and communications equipment(23), etc.. The economic factors of changing these emissions are emission intensities and final demands. The effective combinations of policy instruments to abate these emissions are varied by the industries and substances. For example, Government need to execute the effective TEI management in the Fiber yarn and fabrics(7) sector, and, in furniture(27) sector, the reduction of final demand is more effective.

  • PDF

Ecological Characteristics of Termite(Reticulitermes speratus kyushuensis) for Preservation of Wooden Cultural Heritage (목조문화재의 보존을 위한 한국산 흰개미의 생태적 특성 연구)

  • Lee, Kyu-Shik;Jeong, So-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.327-348
    • /
    • 2004
  • In this study, after analyzing several local climate characteristics of South Korea, I validated distribution, invasion, foraging, underground activities, attack season as ecological characteristics and also temperature, relative humidity, and tree species as preference characteristics of Korean termites (Reticulitermes speratus kyushuensis Morimoto). Especially, southern part of the Korean peninsula is a suitable area for inhabitation and motion of termites holding same ecological characteristic like R. speratus kyushuensis. Busan is a neighboring district at field distribution north limiting temperature of Coptotermes formosanus Shiraki and Chuncheon is a passing area through the Korean Peninsula of field distribution north limiting temperature of Reticulitermes speratus Kolbe. The termite attack of wood devices was about 34.5% for 3 years in the forest of Jongmyo. Although the attack rate of termite increased each year, the detection rate decreased and the missing rate was high by degrees. I confirmed a foraging habits which is a part of termite colony was a role of continuous decomposition and another was a role of new food hunt as experimental results. The foraging termites were found under ground at Jongmyo in Seoul from April to November in the 2001 and the most active period was on July and August. The termite invasion rate of bait station increased in every monitoring. Through the increasing attack rate of bait station during 2nd monitoring (November, 2000) and 3rd monitoring(March, 2001), I confirmed that termites moved into the deep underground in winter, and were working continuously to forage. R. speratus kyushuensis inhabiting at the Korean Peninsula is a species which has food consumption rate with higher temperature. The termite revealed the greatest amount of food(filter paper) at $30^{\circ}C$(90% RH), but showed increasing death rate at over $32^{\circ}C$. Also, survival rate of this termite was 97% at 84% RH($30^{\circ}C$), but killed 100% at 52% RH($30^{\circ}C$) and 70% RH($30^{\circ}C$). For wood feeding, this was observed the preference in a pine tree(Pinus densiflora) above all others. Survival of termites was high(87%) at a pine tree, but low(13.5%) at a paulownia tree(Paulownia coreana). In this study, I presented the biological characteristic of termite(R. speratus kyushuensis Morimoto) and confirmed the deterioration degree of termite on wooden cultural heritage in Korea. Depending on climate and soil temperature, each area in the southern part of the Korea Peninsula, has some different active period and different distribution of R. speratus kyushensis. With these results, I expect that this report helps to prepare the integrated pest management(IPM) of the termite on wooden cultural heritage in Korea, and it may help to reduce the economical loss from termite damage in Korea.