• Title/Summary/Keyword: Wood decomposition

Search Result 66, Processing Time 0.019 seconds

The Role of Fungal Laccase in Biodegradation of Lignin

  • Andrzej Leonowicz;Jolanta Luterek;Maria W.Wasilewska;Anna Matuszewska;M.Hofrichter;D.Ziegenhagen;Jerzy Rogalski;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.1-11
    • /
    • 1999
  • Wood components, cellulose and lignin, are degraded simultaneously and the general outline for the complementary character of carbohydrates and lignin decomposition as well as the existence of enzymatic systems combining these processes is still valid. The degradatiion of free cellulose or hemicellulose into monosaccharides has long been known to be relatively simple, but the mechanism of lignin degradatiion wasn ot solved very clearly yet. Anyway the biodegradation of woold constituents is understood at present as an enzymatic process. Kigninolytic activity has been correlated with lignin and manganese peroxidases. At present the attention is paid to laccase. Laccase oxidizes lignin molecule to phenoxy radicals and quinones . This oxidation can lead to the cleavageo f C-C or C-O bonds in the lignin phenyl-propane subunits, resulting either in degradation of both side chains and aromatic rings, or in demethylation processes. The role of laccase lies in the "activation" of some low molecular weight mediators and radicals produced by fungal cultures. Such activated factors produced also in cooperation with other enzymes are probably exported to the wood environment where they work in degradation processes as the ' enzyme messengers." It is worth mentioning that only fungi possessing laccase show demethylating activity. Thus demethylation, the process important for ligninolysis, is probably caused exclusively by laccase. Under natural conditions laccase seems to work with other fungal enzymes , mediators and mediating radicals. It has shown the possibility of direct Bjrkman lignin depolymerization by cooperative activity of laccase and glucose oxidase.

  • PDF

Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy ($^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Kim, Byung-Ro;Park, Jong-Moon;Sung, Yong-Joo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

The initial mass loss rates and the changes in carbon/nitrogen ratio of dead woods for the three dominant tree species in tropical rainforests of Brunei Darussalam (브루나이 열대우림 내 주요 3개 수종 고사목의 초기 질량 감소율과 탄질율 변화)

  • Roh, Yujin;Jang, Minju;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.218-224
    • /
    • 2021
  • This study was conducted to determine the mass-loss rates and the changes in carbon/nitrogen (C/N) ratio of dead woods, which were of following species: Dryobalanops aromatic, D. rappa, and Cratoxylum arborescens. These were dominant tree species in mixed Dipterocarp forests (MDF) and peat swamp forests (PSF) in Brunei Darussalam. In May, 2019, 48 dead wood samples (15 cm×4.8 cm×5 cm) were placed in MDF and PSF sites, and all the samples were collected after 16 months. The effects of species on mass loss were statistically significant (p<0.05); however, no difference was observed in the mass loss obtained from the two forest types (p>0.05). The initial density (g·cm-3) of the dead woods D. aromatic, D. rappa, and C. arborescens, was 0.64±0.02, 0.60±0.00, and 0.44±0.01, respectively. Also the annual mass loss rate (%) was estimated to be 6.37, 8.17, and 18.53 for D. aromatic, D. rappa, and C. arborescens, respectively. The proportion of dead woods in decay class III was only 25% of C. arborescens samples, which were attacked by wood-feeding invertebrates, such as termites. The C/N ratio decreased significantly in D. aromatic and D. rappa, but the decreasing trend of C/N ratio was not statistically significant in C. arborescens. The results indicate that physical traits of dead woods, such as density, could be one of the main factors causing the decomposition of dead woods initially, as invertebrates such as termites are one of the key decomposers of dead wood in tropical rainforests. In the samples of C. arborescens, which was attacked by invertebrates, nitrogen immobilization occurred to lesser extent as compared to that observed in D. aromatic and D. rappa.

Morphological Characteristics of Decomposition and Browning of Oak Sawdust Medium for Ground Bed Cultivation of Lentinula edodes (표고 지면재배용 참나무 톱밥배지의 분해와 갈변의 형태적 특성)

  • Koo, Chang-Duck;Lee, Seon-Jeong;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This study investigated the internal and external morphological characteristics of decomposition and browning of oak sawdust medium for ground bed cultivation of Lentinula edodes. Within fifty days after L. edodes inoculation, surface hyphae on the bed browned. In 110 days, the fungal hyphae occupied and decomposed wood fibers, vessels and parenchymatous cells from the inside as white profuse hyphal mass was amorphously dissolving the saw dust particles from the outer surface. Most of the white hyphal bed surface became cleanly brown, however, some colony surface became blackened and slimy with contaminating bacteria, hyphae and spores. The brown layer was ca. 0.34 mm thick with highly dense and white hyphal mass beneath, whereas the blackened layer was ca. 1.17 mm thick with shrunken hyphae and less decomposed sawdust particles beneath. The surface hardness of the brown surface was ca. $0.73kgf/cm^2$, soft and resilient, while that of the blackened was ca. $0.91kgf/cm^2$, hard and nonresilient. By 150 days Lentinula edodes mushrooms fruited only on the brown surface and not on the blackened medium.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Use of Red Algae Fiber as Reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu;Kim, Eun-jin;Kwon, Yong Rok;Kim, Jung Soo;Kim, Hae Chan;Park, Han Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.100-106
    • /
    • 2022
  • Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.

Fabrication and Characterization of Zr and Hf Containing Vitrified Forms of Radioactive Waste

  • Young Hwan Hwang;Seong-Sik Shin;Sunghoon Hong;Jung-Kwon Son;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.

Studies on the Pulping Conditions of Separating Useful Components from Disposable Diaper Waste (폐 일회용 기저귀의 유용 성분 회수를 위한 해리조건 연구)

  • Lee, Tai-Ju;Choi, Do-Chim;Nam, Yun-Seok;Jo, Jun-Hyung;Lee, Ho-Seon;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Disposable diaper has been used in order to handle urine and feces conveniently. At present the amount of disposable diaper waste increases gradually. Incineration and landfill have been the only ways to dispose of disposable diapers. However, if they are disposed by landfill, decomposition will take more than one hundred years. In addition, another way of dispose incineration has caused air pollution. Therefore, it is necessary to study recycling process for disposable diaper since plastic and wood fibers of diaper are useful materials to recycle. In this study, pulping condition of disposable diaper waste was studied in order to effectively separate the components. Recovery rates of plastic and fibers were analyzed under different pulping conditions. It was found that optimum pulping consistency was 5%, time was 60 minutes, temperature was $50^{\circ}C$, and cut size is $21cm{\times}21cm$. The recovery rate of plastic and fibers can be achieved above 70% under the optimum pulping condition.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.