• Title/Summary/Keyword: Wood decomposition

Search Result 66, Processing Time 0.021 seconds

Studies on the Risk Class and Morphological Characteristics of Injured Microorganisms in Wooden Cultural Properties (목조문화재 가해 미생물의 형태학적 특성 및 가해위험도 연구)

  • Lee, Min-Young;Jeong, Seon-Hye;Kim, Eun-Song;Kim, Dae-Woon;Chung, Yong-Jae
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.31-46
    • /
    • 2009
  • In the study, we confirmed morphological traits and calculated the Risk Class of 25 mould species, including Tyromyces palustris, through decomposition rate of substrate for characteristic confirmation of injured microorganisms. We received the injured microorganisms in wood and it was pure cultivated. We observed growth traits and decomposition rate of substrate. Also, it allows the calculation of Risk Class to be worried in the case of growth in wooden cultural properties. As a result, Tyromyces palustris, representative of brown-rot, has the characteristics about decomposition rate of substrate - Cellulose ; more active(+++), Lignin ; more active(+++), Xylan ; more active(+++), Starch ; active(++). We classified Tyromcyes palustris as a first Risk Class and as a second Risk Class about Schizophyllum commune et al(9 species, See table 1. We look forward to offering standard data base for evaluating Risk Class as a matter of applying preventive conservation in wooden cultural properties through our study.

  • PDF

Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures (목질탄화물 내의 화학 결합 변화)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Cho, Sung-Taig;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • Properties and chemical bonding of wood charcoal were investigated to understand the chemistry occurring in wood carbonization. From the pH changes of wood charcoal, it is revealed that it becomes acidic to weakly basic for charcoal carbonized at about $300^{\circ}C$, whereas it turns to basic at higher carbonization temperature higher than $600^{\circ}C$. Also, the ratio of carbon atoms in the charcoal was increased with increasing the carbonization temperature, while those of oxygen and hydrogen atoms. This tendency was significant when the carbonization temperature was increased up to $600^{\circ}C$ and the ratio changes of the atoms became stable at above $600^{\circ}C$. In the changes of chemical bonding, the ratio of C-C bonding was increased and those of C-O-H and C-O-R bonding was decreased significantly. It is considered that bondings connected to oxygen atoms tends to be broken, and the ratio of C-C bonding increased. Consequently, it is expected that this change may causes occurrence of new functional groups. In addition to that, it seems to be that the chemical bondings undergo the partial decomposition, formation, and recombination steps, Because ratio of C=O bonding tended to be increased or decreased by increasing the carbonization temperature. This understanding of chemical bond changes in charcoal can be a compensative consideration on the knowledges made only by physical parameters in the properties of micro-pore which has limited to explain the phenomenon. Also, it is considered that this can be treated as a basic knowledge for upgrading and development of use of wood charcoal.

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Combustion Properties of Woods for Indoor Use (II) (실내 사용 목재의 연소 특성 분석 (II))

  • Seo, Hyun Jeong;Kang, Mee Ran;Son, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.478-485
    • /
    • 2015
  • The aim of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of domestic timbers. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test and thermogravimetry (TGA). Thermal decomposition temperatures of the specimens by TGA were recorded as $359.83^{\circ}C$ for White pine, $359.80^{\circ}C$ for Red-Leaved Hornbeam, $363.14^{\circ}C$ for Carolina poplar, $358.59^{\circ}C$ for Konara oak, and $362.11^{\circ}C$ Sargent cherry. Red-Leaved Hornbeam showed the highest value of heat release rate, but, Carolina poplar wood showed the lowest value. In case of the total heat release, Red-Leaved Hornbeam wood showed the highest value and Carolina poplar wood showed the lowest one. The gas analysis results showed that Sargent cherry wood had the lowest value of 0.021, and Konara oak had the highest at 0.031 in the $CO/CO_2$. The minimum value of mass reduction was recorded as 87.57% for Sargent cherry, but, on the other hand, it was 95.03% for Konara oak. There was a correlation between the gas generation of CO and $CO_2$, and combustion behavior of woods. These results are expected to be usful for providing a fundamental guideline with the fire safety of wood use in interior applications.

Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Sim, Sung-Woong;Lee, Gyeong-Sun;Cho, In-Jun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • Park, Byung-Dae;Singh, Adya P.;Um, In Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about $4.86{\pm}1.341nm$. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures ($T_{p1}$ and $T_{p2}$), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that $T_{p1}$ values from $219.6^{\circ}C$ to $235^{\circ}C$ resulted from the sodium carboxylate groups in the CNFs, and that $T_{p2}$ values from $267^{\circ}C$ to $273.5^{\circ}C$ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected $T_{p2}$ values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite's tensile properties.

  • PDF

In Vitro Studies on the Genotoxic Effects of Wood Smoke Flavors

  • Chung, Young-Shin;Ahn, Jun-Ho; Eum, Ki-Hwan;Choi, Seon-A;Oh, Se-Wook;Kim, Yun-Ji;Park, Sue-Nie;Yum, Young-Na;Kim, Joo-Hwan;Lee, Michael
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.321-328
    • /
    • 2008
  • Smoke flavors based on the thermal decomposition of wood have been applied to a variety of food products as an alternative for traditional smoking. Despite its increasing use, the available genotoxicity data on wood smoke flavors (WSF) are still controversial. Thus, potential genotoxic effects of WSF in four short-term in vitro genotoxicity assays were investigated, which included the Ames assay, chromosomal aberration assay, micronucleus test and the alkaline comet assay. WSF did not cause any mutation in the Ames assay using five tester strains at six concentrations of 0.16, 0.31, 0.63, 1.25, 2.5 and 5 ${\mu}l/plate$. To assess clastogenic effect, the in vitro chromosomal aberration assay was performed using Chinese hamster lung cells. No statistically significant increase in the number of metaphases with structural aberrations was observed at the concentrations of 1.25, 2.5, and 5 ${\mu}l/ml$. The in vitro comet assay and micronucleus test results obtained on L5178Y cells also revealed that WSF has no genotoxicity potential, although there was a marginal increase in micronuclei frequencies and DNA damage in the respective micronucleus and comet assays. Taken together, based on the results obtained from these four in vitro studies, it is concluded that WSF is not a mutagenic agent in bacterial cells and causes no chromosomal and DNA damage in mammalian cells in vitro.

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier (연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구)

  • Park, Min Sung;Chang, Yu Woon;Jang, Yu Kyung;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.704-710
    • /
    • 2014
  • Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.

Chemical·Structural characterization of lignin extracted from Pitch Pine with Ionic Liquid (1-ethyl-3-methylimidazolium acetate)Pine with Ionic Liquid (1-ethyl-3-methylimidazolium acetate) (이온성액체(1-ethyl-3-methylimidazolium acetate)로 추출한 리기다소나무(pitch pine) 리그닌의 화학·구조 특성)

  • Kim, Jae-Young;Kim, Tae-Seung;Hwang, Hye-Won;Oh, Shin-Young;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.194-203
    • /
    • 2012
  • 1-Ethyl-3-methylimidazolium acetate known as efficient biomass pretreatment reagent was used for the extraction of lignin from rigida pine wood (pitch pine), which was called to ionic liquid lignin (ILL), and chemical structural features of ILL were compared with the corresponding milled wood lignin (MWL). The amounts of phenolic hydroxyl groups (Phe-OH) was determined to 10.0% for ILL and 7.2% for MWL, respectively, where those of methoxyl groups (OMe) were 4.9% for ILL and 11.0% for MWL, respectively. The weight average molecular weight (Mw) of ILL (3,995) were determined to ca. 1/2 of that of MWL (8,438) and polydispersity index (PDI: Mw/Mn) suggested that the lignin fragments were more uniform in the ILL (PDI 1.36) than in the MWL (PDI 2.64). The temperature (Tm) corresponding to maximum decomposition rate (Vm) of ILL ($306.6^{\circ}C$) was ca. $35^{\circ}C$ lower than that of MWL ($341.9^{\circ}C$), suggesting that ILL was thermally unstable than MWL, as evidence from the lower Tm for ILL. Moreover, the structural characteristics of ILL and MWL were confirmed by spectroscopic analyses (FT-IR and $^{13}C$-NMR), and these results indicated ionic liquid (1-ethyl-3-methylimidazolium acetate) was chemically or physically bound to ILL.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora S. et Z) Powder (I) - Elemental Analysis, SEM, N2 Adsorption-desorption- (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(I) - 원소 분석, SEM, 질소 흡착-탈착 실험 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.44-51
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of Korean red-pine wood (Pinus densiflora S. et Z.) powder charcoal are studied by elemental analysis, nitrogen adsorption-desorption and SEM techniques. The surface structure and physico-chemical properties of the wood charcoal greatly depend on the carbonization temperature and their temperature dependences for sapwood (swd) and heartwood (hwd) are qualitatively analogous. Because of the differences in characteristics such as hardness and composition between heartwood and sapwood, charcoals from heartwood have larger specific surface area and smaller average pore diameter than that from sapwood. Because the decomposition reaction mostly proceeds in the precarbonization stage, the charcoal produced in this stage mainly consists of carbon. The second carbonization reaction is insignificant but still proceeds up to $700^{\circ}C$, and the specific surface area continuously increases. Above $800^{\circ}C$, the surface area is reduced by the pore-filling and narrowing effects and especially above $900^{\circ}C$, new carbon phase with hexagonal column rooted into the pore is formed. The nitrogen adsorption-desorption isotherm of the charcoal is classified as type I and its hysteresis loop was as type H4.