• Title/Summary/Keyword: Wnt

Search Result 270, Processing Time 0.023 seconds

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

Tankyrase: Function and Tankyrase Inhibitor in Cancer

  • Kim, Mi Kyung
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.150-156
    • /
    • 2018
  • Tankyrases are multifunctional poly (ADP-ribose) polymerases that regulate a variety of cellular processes including WNT signaling, telomere maintenance, regulation of mitosis, and many others. Tankyrases interact with target proteins and regulate their interactions and stability through poly (ADP-ribosyl) ation. In addition to their roles in telomere maintenance and regulation of mitosis, tankyrase proteins regulate tumor suppressors such as AXIN, PTEN, and AMOT. Therefore, tankyrases can be effective targets for cancer treatment. Tankyrase inhibitors could affect a variety of pathways that are carcinogenic (essential for the unlimited proliferation of human cancer cells), including WNT, AKT, YAP, telomere maintenance, and regulation of mitosis. Recently, new aspects of the function and mechanism of tankyrases have been reported and several tankyrase inhibitors have been identified. Also, it has been proposed that the combination of conventional chemotherapy agents with tankyrase inhibitors may have synergistic anti-cancer effects. Based on this, it is expected that more advanced and improved tankyrase inhibitors will be developed, enabling new therapeutic strategies against cancer and other tankyrase linked diseases. This review discusses tankyrase function and the role of tankyrase inhibitors in the treatment of cancer.

$\beta$-catenin에 의한 신호전달과 그 역할 ($\beta$-catenin은 세포의 감초인가\ulcorner)

  • 정선주
    • The Zoological Society Korea : Newsletter
    • /
    • v.18 no.1
    • /
    • pp.16-25
    • /
    • 2001
  • Wnt signaling의 주요 분자인 $\beta$-catenin의 기능과 조절에 관한 연구, 특히 TCF family 단백질과 함께 작용하는 신호전달에 관한 연구가 최근에 활발히 진행되고 있다. $\beta$-catenin 단백질은 Drosophila나 Xenopus의 발생초기에 중요한 역할을 한다는 것이 알려져 있고 Wnt (Wingless) 단백질에 의하여 활성화되는 신호전달 과정에 관여한다고 알려져 있으므로, TCF 단백질들이 Wnt signalling pathway에 작용한다는 것을 의미한다. 즉, $\beta$-catenin/TCF complex는 발생초기의 세포의 운명을 결정하는 세포의 분화에 중요하리라 생각된다. 또한 $\beta$-catenin/TCF complex는 세포의 암화에도 중요하다는 것이 보고되었다. 정상세포의 경우, $\beta$-catenin은 APC 라는 tumor suppressor에 의하여 결합하고 단백질의 분해가 유도되어 핵 안의 TCF와 결합하지 못하는데, 암세포의 경우 APC가 결실되었거나 $\beta$-catenin의 양이 과도하게 발현되어 암세포화 되는 것으로 보인다. 즉, $\beta$-catenin은 일종의 oncogene으로 작용하는 단백질이며, 그 작용에 필수적인 전사인자가 TCF라는 것이다. 특히, 대장암세포에서 이 $\beta$-catenin/TCF complex에 의해 활성화되는 유전자로서 c-myc과 cyclin Dl 등이 있는 것으로 보아, $\beta$-catenin/TCF 단백질은 세포의 증식 및 사멸에 관여하는 단백질들의 발현을 조절하는 매우 중요한 인자라고 생각된다.

  • PDF

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats

  • Ronghuan Yin;Ronglan Yin;Man Bai;Yixing Fan;Zeying Wang;Yubo Zhu;Qi Zhang;Taiyu Hui;Jincheng Shen;Siyu Feng;Wenlin Bai
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.555-569
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. Methods: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6A-deficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. Results: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHF-stem cells. We further demonstrated that the internal m6A modification within circRNA-ZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNA-ZNF638. Conclusion: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility

  • Aristizabal-Pachon, Andres Felipe;Carvalho, Thais Inacio;Carrara, Helio Humberto;Andrade, Jurandyr;Takahashi, Catarina Satie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7277-7284
    • /
    • 2015
  • Background: The Wnt/${\beta}$-catenin signaling pathway is an important regulator of cellular functions such as proliferation, survival and cell adhesion. Wnt/${\beta}$-catenin signaling is associated with tumor initiation and progression; ${\beta}$-catenin mutations explain only 30% of aberrant signaling found in breast cancer, indicating that other components and/or regulation of the Wnt/${\beta}$-catenin pathway may be involved. Objective: We evaluated AXIN2 rs2240308 and rs151279728 polymorphisms, and expression profiles of ${\beta}$-catenin destruction complex genes in breast cancer patients. Materials and Methods: We collected peripheral blood samples from 102 breast cancer and 102 healthy subjects. The identification of the genetic variation was performed using PCR-RFLPs and DNA sequencing. RT-qPCR was used to determine expression profiles. Results: We found significant association of AXIN2 rs151279728 and rs2240308 polymorphisms with breast cancer risk. Significant increase was observed in AXIN2 level expression in breast cancer patients. Further analyses showed APC, ${\beta}$-catenin, CK1${\alpha}$, GSK3${\beta}$ and PP2A gene expression to be associated to clinic-pathological characteristics. Conclusions: The present study demonstrated, for the first time, that AXIN2 genetic defects and disturbance of ${\beta}$-catenin destruction complex expression may be found in breast cancer patients, providing additional support for roles of Wnt/${\beta}$-catenin pathway dysfunction in breast cancer tumorigenesis. However, the functional consequences of the genetic alterations remain to be determined.