• 제목/요약/키워드: Wnt/β-catenin signaling

검색결과 77건 처리시간 0.023초

Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway

  • Song, Geu Rim;Choi, Yoon Jung;Park, Soo Jin;Shin, Subeen;Lee, Giseong;Choi, Hui Ji;Lee, Do Yup;Song, Gyu-Yong;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1559-1567
    • /
    • 2021
  • The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, c-myc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC-positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.

New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation

  • Zhou, Wei;Huang, Hai;Zhu, Haiyan;Zhou, Pei;Shi, Xunlong
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.199-207
    • /
    • 2018
  • Background: Ginseng is a well-known traditional Chinese medicine that has been widely used in a range of therapeutic and healthcare applications in East Asian countries. Microbial transformation is regarded as an effective and useful technology in modification of nature products for finding new chemical derivatives with potent bioactivities. In this study, three minor derivatives of ginsenoside compound K were isolated and the inducing effects in the Wingless-type MMTV integration site (Wnt) signaling pathway were also investigated. Methods: New compounds were purified from scale-up fermentation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 through repeated silica gel column chromatography and high pressure liquid chromatography. Their structures were determined based on spectral data and X-ray diffraction. The inductive activities of these compounds on the Wnt signaling pathway were conducted on MC3T3-E1 cells by quantitative real-time polymerase chain reaction analysis. Results: The structures of a known 3-keto derivative and two new dehydrogenated metabolites were elucidated. The crystal structure of the 3-keto derivative was reported for the first time and its conformation was compared with that of ginsenoside compound K. The inductive effects of these compounds on osteogenic differentiation by activating the Wnt/b-catenin signaling pathway were explained for the first time. Conclusion: This study may provide a new insight into the metabolic pathway of ginsenoside by microbial transformation. In addition, the results might provide a reasonable explanation for the activity of ginseng in treating osteoporosis and supply good monomer ginsenoside resources for nutraceutical or pharmaceutical development.

High NDRG3 expression facilitates HCC metastasis by promoting nuclear translocation of β-catenin

  • Shi, JiKui;Zheng, HongZhen;Yuan, LingYan
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.451-456
    • /
    • 2019
  • NDRG1 has been reported to exert pivotal roles in tumor progression and metastasis via Wnt/${\beta}$-catenin signaling pathway. However, little is known about the role of NDRG3 in hepatocarcinogenesis despite its classification in the same subfamily of NDRG1. The present study was aimed to characterize the expression pattern and understand the biological roles of NDRG3 in hepatocarcinogenesis, as a means to exploit its therapeutic potential. It was observed that NDRG3 was up-regulated in HCC tissues and higher NDRG3 expression was associated with significantly shorter overall survival. Furthermore, a lower level of NDRG3 exhibited marked positive correlation with metastasis-free survival. In vitro and in vivo experiments revealed that knock-down of NDRG3 inhibits HCC metastasis and angiogenesis. We further demonstrated that activation of WNT/${\beta}$-catenin signaling and enhanced CSC-like properties were responsible for NDRG3-mediated promoting effect on HCC. In conclusion, the principal findings demonstrated that high NDRG3 expression facilitates HCC metastasis via regulating the turnover of ${\beta}$-catenin, as well as provides a potential therapeutic target for future therapeutic interventions.

콩제비꽃 전초 추출물의 모유두세포 증식 기전 (The Mechanism of Whole Plant Extract of Viola verecunda on the Proliferation of Dermal Papilla Cells)

  • 강정일;서민정;최윤경;신수영;황용;고재덕;유은숙;김상철;강희경
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.34-40
    • /
    • 2021
  • Proliferation and maintain of dermal papilla during progression of hair-cycle are crucial to the duration of anagen and regulated by diverse signaling pathway such as PI3K/Akt/Wnt/β-catenin pathway. In this study, we investigated the effects and mechanisms of Viola verecunda on dermal papilla cells. Treatment of dermal papilla cells with whole plant extract of V. verecunda resulted in cell proliferation, which was accompanied by up-regulation of cyclin D1, phospho (ser780)-pRB and cdc2 p34, and down-regulation of p27kip1. V. verecunda extract also promoted the levels of phospho (ser473)-Akt and phospho (ser780)-pRB in a time-dependent manner. Inhibition of PI3K/Akt by Wortmannin suppressed progression of cell-cycle, thereby attenuated the increases in proliferation of dermal papilla cells by V. verecunda extract. We further investigated Wnt/β-catenin pathway with respect to the effects of V. verecunda extract on the proliferation of dermal papilla cells. Treatment with V. verecunda extract results in up-regulation of Wnt/β-catenin proteins such as phospho (ser9)-GSKβ, phospho (ser552)-β-catenin and phospho (ser675)-β-catenin. In addition, Wortmannin abrogated V. verecunda extract mediated up-regulation of cdc2 p34 and down-regulation of p27kip1. These finding reveal that the proliferative effect of V. verecunda mediated by alteration of cell-cycle via activating PI3K/Akt/Wnt pathway in dermal papilla cells.

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

β-carotene regulates cancer stemness in colon cancer in vivo and in vitro

  • Lee, Kyung Eun;Kwon, Minseo;Kim, Yoo Sun;Kim, Yerin;Chung, Min Gi;Heo, Seung Chul;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제16권2호
    • /
    • pp.161-172
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide and has a high recurrence rate, which is associated with cancer stem cells (CSCs). β-carotene (BC) possesses antioxidant activity and several anticancer mechanisms. However, no investigation has examined its effect on colon cancer stemness. MATERIALS/METHODS: CD133+CD44+ HCT116 and CD133+CD44+ HT-29 cells were isolated and analyzed their self-renewal capacity by clonogenic and sphere formation assays. Expressions of several CSCs markers and Wnt/β-catenin signaling were examined. In addition, CD133+CD44+ HCT116 cells were subcutaneously injected in xenograft mice and analyzed the effect of BC on tumor formation, tumor volume, and CSCs markers in tumors. RESULTS: BC inhibited self-renewal capacity and CSC markers, including CD44, CD133, ALDH1A1, NOTCH1, Sox2, and β-catenin in vitro. The effects of BC on CSC markers were confirmed in primary cells isolated from human CRC tumors. BC supplementation decreased the number and size of tumors and delayed the tumor-onset time in xenograft mice injected with CD133+CD44+ HCT116 cells. The inhibitory effect of BC on CSC markers and the Wnt/β-catenin signaling pathway in tumors was confirmed in vivo as well. CONCLUSIONS: These results suggest that BC may be a potential therapeutic agent for colon cancer by targeting colon CSCs.

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Cloning, Purification and NMR Studies on β-catenin C-terminal Domain

  • Oh, Jeongmin;Choi, Sooho;Yun, Ji-Hye;Ko, Yoon-Joo;Choi, Kang-Yell;Lee, Weontae
    • 한국자기공명학회논문지
    • /
    • 제21권2호
    • /
    • pp.72-77
    • /
    • 2017
  • ${\beta}-catenin$ is a key signaling protein which regulates cell signaling and gene transcription. Abnormal activation of ${\beta}-catenin$ is linked to many cancers, particularly with colorectal cancers. Although many genetic and biological studies on $Wnt/{\beta}-catenin$ have been reported and structures of the complex between ${\beta}-catenin$ and its diverse binding partners have been published, many of them have focused on armadillo repeat domain of ${\beta}-catenin$. Both N- and C-terminal domains have been suggested to regulate interactions of ${\beta}-catenin$ with other molecules, but still little is known about the C-terminal unstructured domain. To investigate the structure of this domain, construct of C-terminus was designed and structural studies were performed using size exclusion chromatography (SEC), circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy. We observed that not only the purified full-length construct but the purified C-terminal construct also dimerizes in solution by SEC, suggesting that this domain involves in dimerization of ${\beta}-catenin$. CD and fluorescence data indicate its flexibility and structural formation in the presence of membrane environments.

삿갓사초 추출물의 모발 성장 기전 활성화 효과 (The Effect of Carex dispalata Extract on the Activation of Anagen Pathway)

  • 강정일;서민정;최윤경;신수영;김선유;유은숙;김상철;강희경
    • 생약학회지
    • /
    • 제52권4호
    • /
    • pp.234-241
    • /
    • 2021
  • Dermal papilla cells (DPCs) are present throughout the hair cycle and play an essential role in hair cycle and hair growth. In this study, we investigated the effect of Carex dispalata on the activation of anagen pathway in DPCs. C. dispalata extract increased the proliferation of DPCs and induced changes in the levels of cell cycle-related proteins. To elucidate the mechanism by which C. dispalata extract stimulates the anagen pathway related to the proliferation of DPCs, we evaluated the effect of C. dispalata extract on the activation of Akt signaling. The increase in the level of phospho-Akt by C. dispalata extract was inhibited by PI3K inhibitor (wortmannin). Wortmannin reduced the effects of C. dispalata extract on the levels of cell cycle-related proteins and proliferation of DPCs. C. dispalata extract increased the levels of Wnt/β-catenin proteins. Wnt/β-catenin inhibitor (XAV939) inhibited changes in cell cycle, cell cycle-related proteins, Wnt/β-catenin proteins, and proliferation induced by C. dispalata extract. C. dispalata extract increased the level of autophagy protein (LC3I/II), and this change was inhibited by XAV939. These results suggest that C. dispalata extract can activate PI3K/Akt, Wnt/β-catenin, and autophagy pathways in DPCs to induce cell proliferation, and thereby promote hair growth phase.

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.