• Title/Summary/Keyword: Wiskott-Aldrich syndrome

Search Result 9, Processing Time 0.029 seconds

DENTAL TREATMENT IN A CHILD WITH WISKOTT-ALDRICH SYNDROME : A CASE REPORT (Wiskott-Aldrich syndrome 환아의 치과치료에 관한 임상적 연구)

  • Yang, Cheol-Hee;An, Soo-Hyeon;Rho, Yong-Kwan;Kim, Jae-Gon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.293-299
    • /
    • 1997
  • Wiskott-Aldrich syndrome is a rare, hereditary disease occurring in males and was first described in 1937. It is characterized by cutaneous eczema, thrombocytopenic purpura and an increased susceptibility to infection due to an immunologic defect. Patients with Wiskott-Aldrich syndrome have a poor antibody response to polysaccharide antigens, low levels of IgM and high levels of IgA and IgE in serum. Oral manifestations of Wiskott-Aldrich syndrome was observed a spontaneous gingival bleeding, palatal petechiae, ulcer and gingival hyperplasia. We report on dental treatment of a 5 years old boy with severe spontaneous gingival bleeding and ulcer suffered from Wiskott-Aldrich syndrome. Prophylactic antibiotics to prevent infection and all potential measures including platelet concentrate therapy to prevent postoperative bleeding should be undertaken. Good oral hygiene should be maintained for prevention of infection by oral normal flora.

  • PDF

WISKOTT-ALDRICH SYNDROME WITH DENTAL PROBLEMS : CASE REPORT (Wiskott-Aldrich 증후군 환아의 증례보고)

  • Lee, Yeon-Joo;Hyun, Hong-Keun;Jang, Chul-Ho;Kim, Yeong-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.468-472
    • /
    • 2007
  • The Wiskott-Aldrich Syndrome (WAS) is an inherited immunodeficiency caused by a variety of mutations in the gene encoding the WAS protein (WASp). First described in 1937 by Wiskott, the incidence of WAS has so far been estimated at 4 in 106 live births. The Wiskott-Aldrich Syndrome is an X-linked condition characterized by 1) an increased tendency to bleed caused by a reduced number of platelets, 2) recurrent bacterial, viral and fungal infections, and 3) eczema of the skin. The purpose of this report is to present cases highlighting the clinical features of the syndrome and the required considerations in the treatment of patients. The report consists of two particular cases: a 2-year-11-month-old boy seen for a routine oral examination prior to his bone marrow transplantation and a 2-year-6-month-old boy with herpes gingivostomatitis and teeth discoloration.

  • PDF

A Case of Wiskott-Aldrich Syndrome with Novel Mutation in Exon 2 of the WASP Gene (WASP 유전자의 Exon 2에서 새로운 돌연변이를 가진 Wiskott-Aldrich 증후군의 1례)

  • Lee, Hyuk;Park, Jung-In;Kim, Sun Young;Moon, Kyeung Hee;Yi, Ho Keun;Hwang, Pyeong Han
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.551-556
    • /
    • 2005
  • Wiskott-Aldrich syndrome(WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia with small platelet volume, eczema, and recurrent infections, and is also characterized by increased incidence of auto immune diseases and malignancies. The phenotype observed in this syndrome is caused by mutation in the Wiskott-Aldrich syndrome protein(WASP) gene localized to the proximal short arm of the X chromosome and recently isolated through positional cloning. The gene encodes a 502 amino acid protein, which contains 12 exons and spans 9 kb of genomic DNA. The function of the encoded protein is not well understood. The clinical diagnosis of WAS can be difficult and is usually confirmed by the detection of WASP gene mutations and the expression of WSAP in patient blood sample using genetic analysis. We reported a case of a 13-month old boy with WAS who was identified with the novel mutation in exon 2 of WASP gene by direct sequencing and the complete absence of WASP expression by immunoblotting.

A case of familial X-linked thrombocytopenia with a novel WAS gene mutation

  • Lee, Eu Kyoung;Eem, Yeun-Joo;Chung, Nack-Gyun;Kim, Myung Shin;Jeong, Dae Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.6
    • /
    • pp.265-268
    • /
    • 2013
  • Wiskott-Aldrich syndrome (WAS) is an inherited X-linked disorder. The WAS gene is located on the X chromosome and undergoes mutations, which affect various domains of the WAS protein, resulting in recurrent infection, eczema, and thrombocytopenia. However, the clinical features and severity of the disease vary according to the type of mutations in the WAS gene. Here, we describe the case of a 4-year-old boy with a history of marked thrombocytopenia since birth, who presented with recurrent herpes simplex infection and late onset of eczema. Examination of his family history revealed that older brother, who died from intracranial hemorrhage, had chronic idiopathic thrombocytopenia. Therefore, we proceeded with genetic analysis and found a new deletion mutation in the WAS gene: c.858delC (p.ser287Leufs$^*21$) as a hemizygous form.

WAVEs: A Novel and Promising Weapon in the Cancer Therapy Tool Box

  • Sakthivel, K.M.;Prabhu, V. Vinod;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1719-1722
    • /
    • 2012
  • The Wiskott-Aldrich Syndrome Protein family Verprolin - homologous proteins (WAVEs), encoded by a metastasis promoter gene, play considerable roles in adhesion of immune cells, cell proliferation, migration and destruction of foreign agents by reactive oxygen species. These diverse functions have lead to the hypothesis that WAVE proteins have multi-functional roles in regulating cancer invasiveness, metastasis, development of tumor vasculature and angiogenesis. Differentials in expression of WAVE proteins are associated with a number of neoplasms include colorectal cancer, hepatocellular cancer, lung squamous cell carcinoma, human breast adenocarcinoma and prostate cancer. In this review we attempt to unify our knowledge regarding WAVE proteins, focusing on their potentials as diagnostic markers and molecular targets for cancer therapy.

Recent advance in primary immune deficiency disorders (일차성 면역결핍질환의 최신 지견)

  • Kang, Hyoung-Jin;Shin, Hee Young;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.6
    • /
    • pp.649-654
    • /
    • 2009
  • The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC) (Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motor proteins essential for the intracellular transport of organelles and protein complexes in cells. Kinesin 1 is a member of those KIFs that transport various cargoes, including organelles, synaptic vesicles, neurotransmitter receptors, cell signaling molecules, and mRNAs through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) are non-motor subunits that associate with the kinesin heavy chain (KHC) dimer. KLCs interact with many different binding proteins, but their particular binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. We found an interaction between the TPR domain of KLC1 and Wiskott-Aldrich syndrome protein family member 1 (WAVE1), a member of the WASP/WAVE family involved in regulation of actin cytoskeleton. WAVE1 bound to the six TPR domain-containing regions of KLC1 and did not interact with KHCs (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. The carboxyl (C)-terminal verprolin-cofilin-acidic (VCA) domain of WAVE1 is essential for interaction with KLC1. Also, other WAVE isoforms (WAVE2 and WAVE3) interacted with KLC1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, WAVE1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B. These results suggest that kinesin 1 motor protein may transport WAVE complexes or WAVE-coated cargoes in cells.

A Maternal Transcription Factor, Junction Mediating and Regulatory Protein is Required for Preimplantation Development in the Mouse

  • Lin, Zi-Li;Li, Ying-Hua;Jin, Yong- Xun;Kim, Nam-Hyung
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.285-295
    • /
    • 2019
  • Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. The actin-regulatory activity of JMY is based on a cluster of three actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domains that nucleate actin filaments directly and promote nucleation of the Arp2/3 complex. In addition to these activities, we examined the activity of JMY generation in early embryo of mice carrying mutations in the JMY gene by CRISPR/Cas9 mediated genome engineering. We demonstrated that JMY protein shuttled expression between the cytoplasm and the nucleus. Knockout of exon 2, CA (central domain and Arp2/3-binding acidic domain) and NLS-2 (nuclear localization signal domain) on the JMY gene by CRISPR/Cas9 system was effective and markedly impeded embryonic development. Additionally, it impaired transcription and zygotic genome activation (ZGA)-related genes. These results suggest that JMY acts as a transcription factor, which is essential for the early embryonic development in mice.

Pneumocystis jirovecii pneumonia in pediatric patients: an analysis of 15 confirmed consecutive cases during 14 years

  • Kim, Kyung-Ran;Kim, Jong Min;Kang, Ji-Man;Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.6
    • /
    • pp.252-255
    • /
    • 2016
  • Purpose: Pneumocystis jirovecii pneumonia occurs in various immunocompromised patients. Despite the prophylaxis strategies in clinical practice, certain patients develop P. jirovecii pneumonia. This study was performed to investigate pediatric cases with P. jirovecii pneumonia in a single center. Methods: We identified pediatric patients younger than 19 years with microbiologically confirmed P. jirovecii pneumonia from January 2000 to February 2014. A retrospective chart review was performed. Results: Fifteen episodes of P. jirovecii pneumonia in 14 patients were identified with median age of 8.3 years (range, 0.4-18.6 years). Among these patients, 11 patients had hematology-oncology diseases, 2 had primary immunodeficiency disorders (one with severe combined immunodeficiency and the other with Wiskott Aldrich syndrome), 1 had systemic lupus erythematosus and 1 received kidney transplant. Four patients were transplant recipients; 1 allogeneic and 2 autologous hematopoietic cell transplant and 1 with kidney transplant. The median absolute lymphocyte count at the diagnosis of P. jirovecii pneumonia was $5,156cells/mm^3$ (range, $20-5,111cells/mm^3$). In 13 episodes (13 of 15, 86.7%), patients were not receiving prophylaxis at the onset of P. jirovecii pneumonia. For treatment, trimethoprim/sulfamethoxazole was given as a main therapeutic agent in all 15 episodes. Steroid was given in 9 episodes (60%). Median treatment duration was 15 days (range, 4-33 days). Overall mortality at 60 days was 35.7% (5 of 14). Conclusion: Majority of our patients developed P. jirovecii pneumonia while not on prophylaxis. Continuous efforts and more data are needed to identify high risk patients who may get benefit from P. jirovecii pneumonia prophylaxis.