• 제목/요약/키워드: Wireless-power communication networks

Search Result 419, Processing Time 0.034 seconds

Experimental Design of AODV Routing Protocol with Maximum Life Time (최대 수명을 갖는 AODV 라우팅 프로토콜 실험 설계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.29-45
    • /
    • 2017
  • Ad hoc sensor network is characterized by decentralized structure and ad hoc deployment. Sensor networks have all basic features of ad hoc network except different degrees such as lower mobility and more stringent energy requirements. Existing protocols provide different tradeoffs among some desirable characteristics such as fault tolerance, distributed computation, robustness, scalability and reliability. wireless protocols suggested so far are very limited, generally focusing on communication to a single base station or on aggregating sensor data. The main reason having such restrictions is due to maximum lifetime to maintain network activities. The network lifetime is an important design metric in ad hoc networks. Since every node does a router role, it is not possible for other nodes to communicate with each other if some nodes do not work due to energy lack. In this paper, we suggest an experimental ad-hoc on-demand distance vector routing protocol to optimize the communication of energy of the network nodes.The load distribution avoids the choice of exhausted nodes at the route selection phase, thus balances the use of energy among nodes and maximizing the network lifetime. In transmission control phase, there is a balance between the choice of a high transmission power that lead to increase in the range of signal transmission thus reducing the number of hops and lower power levels that reduces the interference on the expense of network connectivity.

Power-limited Cooperative Diversity with Selection Combining in Rayleigh Fading for Wireless Ad-hoc Networks (레일레이 페이딩하에서 무선 ad-hoc 네트워크를 위한 전력제한된 선택결합 협동다이버시티)

  • Kim Nam-Soo;Lee Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.769-774
    • /
    • 2006
  • Based on the performance of a cooperative diversity with selection combining in Rayleigh fading, the power control range of a relay node is investigated. Also the effect of the power-limited relay node to the system performance is investigated. If the average signal-to-noise ratio(SNR) of each signal path is equal, the single relay cooperative diversity is obtained 13.5dB gain at the outage probability of $1{\times}10^{-3}$ in Rayleigh fading. We noticed that the limited power of a relay node severely degrades the system performance. Therefore the node with limited power in ad-hoc network is not recommended as a relay node in cooperative diversity system.

Geomulticast: Location based Multicast Routing Protocol using Route Stability in Mobile Ad-hoc Wireless Networks (지오멀티캐스트: 모바일 Ad-hoc 무선 네트워크에서 경로 안정성을 이용한 위치기반 멀티캐스트 라우팅 프로토콜)

  • Ha, Sue Hyung;Le, The Dung;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.191-201
    • /
    • 2013
  • In this paper, we propose a location based multicast routing protocol, called Geomulticast, in mobile ad-hoc wireless networks. The main features and contributions of the proposed geomulticast are as follows. First, support data transmission to only the specific mobile nodes within a target area. Second, establish stable routing route by using mobility information of nodes. Third, reduce control overhead, power for construction of routing route by using geomulticast guided line information. Fourth, present a theoretical model for establishing stable route. The performance evaluation of the proposed geomulticast is executed by using OPNET simulation and theoretical analysis, and the results of simulation and theoretical analysis have similar patterns. And we can see that data packets are efficiently transmitted to specific user groups within a specific area.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

A Data Aggregation Scheme for Enhancing the Efficiency of Data Aggregation and Correctness in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 수집의 효율성 및 정확성 향상을 위한 데이터 병합기법)

  • Kim, Hyun-Tae;Yu, Tae-Young;Jung, Kyu-Su;Jeon, Yeong-Bae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.531-536
    • /
    • 2006
  • Recently, many of researchers have been studied in data processing oriented middleware for wireless sensor networks with the rapid advances on sensor and wireless communication technologies. In a wireless sensor network, a middleware should handle the data loss problem at an intermediate sensor node caused by instantaneous data burstness to support efficient processing and fast delivering of the sensing data. To handle this problem, a simple data discarding or data compressing policy for reducing the total amount of data to be transferred is typically used. But, data discarding policy decreases the correctness of a collected data, in other hand, data compressing policy requires additional processing overhead with the high complexity of the given algorithm. In this paper, it proposes a data-average method for enhancing the efficiency of data aggregation and correctness where the sensed data should be delivered only with the limited computing power and energy resource. With the proposed method, unnecessary data transfer of the overlapped data is eliminated and data correctness is enhanced by using the proposed averaging scheme when an instantaneous data burstness is occurred. Finally, with the TOSSTM simulation results on TinyBB, we show that the correctness of the transferred data is enhanced.

A Design of Enhanced Lower-Power Data Dissemination Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 개선된 저전력형 데이터 확산 프로토콜 설계)

  • Choi Nak-Sun;Kim Hyun-Tae;Kim Hyoung-Jin;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.437-441
    • /
    • 2006
  • Wireless sensor network consists of sensor nodes which are disseminated closely to each other to collect informations for the various requests of a sensor application applied for sensing phenomenons in real world. Each sensor node delivers sensing informations to an end user by conducting cooperative works such as processing and communicating between sensor nodes. In general, the power supply of a sensor node is depends on a battery so that the power consumption of a sensor node decides the entire life time of a sensor network. To resolve the problem, optimal routing algorithm can be used for prolong the entire life time of a sensor network based on the information on the energy level of each sensor node. In this paper, different from the existing Directed Diffusion and SPTN method, we presents a data dissemination protocol based on lower-power consumption that effectively maximizes the whole life time of a sensor network using the informations on the energy level of a sensor node and shortest-path hops. With the proposed method, a data transfer path is established using the informations on the energy levels and hops, and the collected sensing information from neighboring nodes in the event-occurring area is merged with others and delivered to users through the shortest path.

  • PDF

Design and Implementation of a Micro-Modem for Underwater Acoustic Communications (수중 음향 통신을 위한 초소형 모뎀 설계 및 구현)

  • Jeon, Jun-Ho;Cho, Hun-Chul;Kim, Chang-Hwa;Ryuh, Young-Sun;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.405-411
    • /
    • 2011
  • As the interest in ocean environment monitoring and ocean development has been increased, the need for researches on underwater wireless sensor network (UWSN) and low power consuming acoustic modem for UWSN has been arisen. In this paper, we design and implement a micro-modem equipped with a tiny and omnidirectional transducer for underwater acoustic communications. In addition, we make experiments in a water tank and a pond in order to verify the performance of the developed modem in terms of supply voltage and communication distance, and analyze the results. According to the outdoor experiments, the modem can send data wirelessly in underwater at a distance of 40 meter with a data rate of 200 bps and a bit error rate of $10^{-5}$ when the supply voltage is 12 V. Due to its small size, low power consumption and omnidirectional property, it is expected that the modem which is implemented in this paper could be utilized for various applications based on UWSN.

A Power Management Scheme for Sensors with MCU in Sleep Mode in Nano-Q+ (Nano-Q+에서 MCU 및 센서의 자동 슬립을 지원하는 전력 관리 기법)

  • So, Sun-Sup;Choi, Bok-Dong;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1928-1934
    • /
    • 2009
  • This paper proposes a power management scheme for sensor nodes in wireless sensor networks based on sensor node operating system supporting the sensor transparency, which can turn off the sensors when the MCU is in sleep mode. We classify the sensors in two types, that is, event sensors and polling sensors, to be able to decide whether the sensor is a type of sensors whose power supply can be turned off or not, and we design a new scheduler to support recognition of those different types of sensors. Implementing and evaluation of the scheduler and the power manager supporting sensor transparency are shown based on Nano-Q+.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.