• Title/Summary/Keyword: Wireless-channel

Search Result 2,255, Processing Time 0.029 seconds

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Channel Coding Based Physical Layer Security for Wireless Networks (채널 부호화를 통한 물리계층 무선네트워크 보안기술)

  • Asaduzzaman, Asaduzzaman;Kong, Hyung Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.57-70
    • /
    • 2008
  • This paper introduces a new paradigm of physical layer security through channel coding for wireless networks. The well known spread spectrum based physical layer security in wireless network is applicable when code division multiple access (CDMA) is used as wireless air link interface. In our proposal, we incorporate the proposed security protocol within channel coding as channel coding is an essential part of all kind of wireless communications. Channel coding has a built-in security in the sense of encoding and decoding algorithm. Decoding of a particular codeword is possible only when the encoding procedure is exactly known. This point is the key of our proposed security protocol. The common parameter that required for both encoder and decoder is generally a generator matrix. We proposed a random selection of generators according to a security key to ensure the secrecy of the networks against unauthorized access. Therefore, the conventional channel coding technique is used as a security controller of the network along with its error correcting purpose.

  • PDF

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

Wireless Channel Identification Algorithm Based on Feature Extraction and BP Neural Network

  • Li, Dengao;Wu, Gang;Zhao, Jumin;Niu, Wenhui;Liu, Qi
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.141-151
    • /
    • 2017
  • Effective identification of wireless channel in different scenarios or regions can solve the problems of multipath interference in process of wireless communication. In this paper, different characteristics of wireless channel are extracted based on the arrival time and received signal strength, such as the number of multipath, time delay and delay spread, to establish the feature vector set of wireless channel which is used to train backpropagation (BP) neural network to identify different wireless channels. Experimental results show that the proposed algorithm can accurately identify different wireless channels, and the accuracy can reach 97.59%.

Wireless Channel Management Scheme for ASMD Groups in Wireless N-screen Services

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1871-1877
    • /
    • 2016
  • In this paper, a Wireless USB (WUSB) protocol is adopted for development of ASMD (Adaptive Source Multi Device) N-screen wireless services. WUSB is the USB technology merged with WiMedia PHY and Distributed-MAC (D-MAC). However, the current WUSB protocol can't provide seamless N-screen streaming services to moving WUSB devices in home network environment. Therefore, to provide the ASMD N-screen services through WUSB based on D-MAC protocol, a channel management scheme is proposed to support seamless mobility between adjacent ASMD groups for wireless IPTV N-screen services. In simulation results, proposed ASMD channel management (ACM) scheme is compared with conventional WUSB channel management scheme in view points of throughput, average path interference and energy consumption according to various numbers of nodes and elapsed simulation times. Through simulation results, it is explained that proposed ASMD channel management (ACM) scheme should be adopted in the WUSB protocol to realize ASMD N-screen wireless services.

Clustering Formation and Topology Control in Multi-Radio Multi-Channel Wireless Mesh Networks

  • Que, Ma. Victoria;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.488-501
    • /
    • 2008
  • Convergence of various wireless systems can be cost effectively achieved through enhancement of existing technology. The emergence of Wireless Mesh Network (WMN) entails the interoperability and interconnection of various wireless technologies in one single system. Furthermore, WMN can be implemented with multi-radio and multi-channel enhancement. A multi-radio, multi-channel wireless mesh network could greatly improve certain networking performance metrics. In this research, two approaches namely, clustering and topology control mechanisms are integrated with multi-radio multi-channel wireless mesh network. A Clustering and Topology Control Algorithm (CTCA)is presented that would prolong network lifetime of the client nodes and maintain connectivity of the routers.

Develop an Effective Security Model to Protect Wireless Network

  • Ataelmanan, Somya Khidir Mohmmed;Ali, Mostafa Ahmed Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.48-54
    • /
    • 2021
  • Security is an important issue for wireless communications and poses many challenges. Most security schemes have been applied to the upper layers of communications networks. Since in a typical wireless communication, transmission of data is over the air, third party receiver(s) may have easy access to the transmitted data. This work examines a new security technique at the physical layer for the sake of enhancing the protection of wireless communications against eavesdroppers. We examine the issue of secret communication through Rayleigh fading channel in the presence of an eavesdropper in which the transmitter knows the channel state information of both the main and eavesdropper channel. Then, we analyze the capacity of the main channel and eavesdropper channel we also analyze for the symbol error rate of the main channel, and the outage probability is obtained for the main transmission. This work elucidate that the proposed security technique can safely complement other Security approaches implemented in the upper layers of the communication network. Lastly, we implement the results in Mat lab

Deep learning-based scalable and robust channel estimator for wireless cellular networks

  • Anseok Lee;Yongjin Kwon;Hanjun Park;Heesoo Lee
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.915-924
    • /
    • 2022
  • In this paper, we present a two-stage scalable channel estimator (TSCE), a deep learning (DL)-based scalable, and robust channel estimator for wireless cellular networks, which is made up of two DL networks to efficiently support different resource allocation sizes and reference signal configurations. Both networks use the transformer, one of cutting-edge neural network architecture, as a backbone for accurate estimation. For computation-efficient global feature extractions, we propose using window and window averaging-based self-attentions. Our results show that TSCE learns wireless propagation channels correctly and outperforms both traditional estimators and baseline DL-based estimators. Additionally, scalability and robustness evaluations are performed, revealing that TSCE is more robust in various environments than the baseline DL-based estimators.

Joint Channel Assignment and Multi-path Routing in Multi-radio Multi-channel Wireless Mesh Network

  • Pham, Ngoc Thai;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.824-832
    • /
    • 2009
  • Multi-radio multi-channel Wireless Mesh Network requires an effective management policy to control the assignment of channels to each radio. We concentrated our investigation on modeling method and solution to find a dynamic channel assignment scheme that is adapted to change of network traffic. Multi-path routing scheme was chosen to overwhelm the unreliability of wireless link. For a particular traffic state, our optimization model found a specific traffic distribution over multi-path and a channel assignment scheme that maximizes the overall network throughput. We developed a simple heuristic method for channel assignment by gradually removing clique load to obtain higher throughput. We also presented numerical examples and discussion of our models in comparison with existing research.

  • PDF