• Title/Summary/Keyword: Wireless sensor network(WSN)

Search Result 645, Processing Time 0.027 seconds

Design and Performance Analysis of Welfare Management System based on WSN (WSN 기반 복지 관리 시스템 설계 및 성능분석)

  • Kim, Ji-Seong;Kim, Kang-Hee;Hwang, Ho-Young;Suh, Hyo-Joong
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.99-107
    • /
    • 2008
  • Wireless sensor networks (WSN) based on low-power technologies become important portion of ubiquitous systems. In this paper, we introduce a WSN-based welfare management system as one of the WSN applications. Especially, we implement S-MAC (Sensor Medium Access control) protocol on our system that saves both cost and power consumption, and we evaluate system performances using the TOSSIM simulator. Sensors and a small database server are placed in the house of participant, which collects and stores some environment conditions of the house. The small servers are connected to each others by wireless ad-hoc network.

  • PDF

Localization for Cooperative Behavior of Swarm Robots Based on Wireless Sensor Network (무선 센서 네트워크 기반 군집 로봇의 협조 행동을 위한 위치 측정)

  • Tak, Myung-Hwan;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, we propose the localization algorithm for the cooperative behavior of the swarm robots based on WSN (Wireless Sensor Network). The proposed method is as follows: First, we measure positions of the L-bot (Leader robot) and F-bots (Follower robots) by using the APIT (Approximate Point In Triangle) and the RSSI (Received Signal Strength Indication). Second, we measure relative positions of the F-bots against the pre-measured position of the L-bot by using trilateration. Then, to revise a position error caused by noise of the wireless signal, we use the particle filter. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

Communication and Security Technology Trends in Drone-assisted Wireless Sensor Network (드론 기반 무선 센서 네트워크의 통신 및 보안 기술 동향)

  • Wang, G.;Lee, B.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • In drone-assisted wireless sensor networks, drones collect data from sensors in an energy-efficient manner and quickly distribute urgent information to sensor nodes. This article introduces recent communication and security schemes for drone-assisted wireless sensor networks. For the communication schemes, we introduce data collection optimization schemes, drone position and movement optimization schemes, and drone flight path optimization schemes. For the security schemes, we introduce authentication and key management schemes, cluster formation schemes, and cluster head election schemes. Then, we present some enhancement methodologies for these communication and security schemes. As a conclusion, we present some interesting future work items.

A Residual Power Estimation Scheme Using Machine Learning in Wireless Sensor Networks (센서 네트워크에서 기계학습을 사용한 잔류 전력 추정 방안)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • As IoT(Internet Of Things) devices like a smart sensor have constrained power sources, a power strategy is critical in WSN(Wireless Sensor Networks). Therefore, it is necessary to figure out the residual power of each sensor node for managing power strategies in WSN, which, however, requires additional data transmission, leading to more power consumption. In this paper, a residual power estimation method was proposed, which uses ignorantly small amount of power consumption in the resource-constrained wireless networks including WSN. A residual power prediction is possible with the least data transmission by using Machine Learning method with some training data in this proposal. The performance of the proposed scheme was evaluated by machine learning method, simulation, and analysis.

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

Energy Efficient Routing Protocol in Wireless Sensor Networks with Hole (홀이 있는 WSN 환경에서 에너지 효율적인 라우팅 프로토콜 )

  • Eung-Bum Kim;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2023
  • Energy-efficient routing protocol is an important task in a wireless sensor network that is used for monitoring and control by wirelessly collecting information obtained from sensor nodes deployed in various environments. Various routing techniques have been studied for this, but it is also necessary to consider WSN environments with specific situations and conditions. In particular, due to topographical characteristics or specific obstacles, a hole where sensor nodes are not deployed may exist in most WSN environments, which may result in inefficient routing or routing failures. In this case, the geographical routing-based hall bypass routing method using GPS functions will form the most efficient path, but sensors with GPS functions have the disadvantage of being expensive and consuming energy. Therefore, we would like to find the boundary node of the hole in a WSN environment with holes through minimal sensor function and propose hole bypass routing through boundary line formation.

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF