• Title/Summary/Keyword: Wireless packet scheduling

Search Result 120, Processing Time 0.026 seconds

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Distributed Proportional Fair Scheduling for Wireless LANs (무선 LAN을 위한 분산화된 비례공정 스케줄링)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2262-2264
    • /
    • 2007
  • In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. Proportional fair scheduling is one of the opportunistic scheduling schemes and used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS). In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains up to 23% higher throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

An Effective Location-based Packet Scheduling Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 효율적인 위치기반 패킷 스케줄링 방식)

  • Kim, Young-An;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.719-727
    • /
    • 2007
  • The Wireless Mesh Network technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield of armed forces. Therefore, Wireless Mesh Network is frequently used to satisfy needs for internet connection and active studies and research on them are in progress However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment, it is restricted for remote units to have their Mesh Node to get real-time services. Such phenomenon might cause an issue in fairness. In order to resolve this issue, the Location-based Packet Scheduling Scheme, which can provide an fair QoS to each mesh node that is connected to each echelon's AP and operates based on WRR method that gives a priority to emergency message and control packet. The performance of this scheme is validated.

Distributed opportunistic packet scheduling for wireless ad-hoc network (무선 에드혹 네트워크에서 분산화된 opportunistic 패킷스케줄링)

  • Park, Hyung-Kun;Yu, Yun-Seop
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.204-206
    • /
    • 2009
  • Opportunistic scheduling is one of the important techniques to maximize multiuser diversity gain. In this paper, we propose a distributed opportunistic scheduling scheme for ad-hoc network. In the proposed distributed scheduling scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed scheduling using extensive simulation and simulation results show that proposed scheduling obtains higher network throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

  • PDF

Wireless Packet Scheduling Algorithms based on Link Level Retransmission (링크 계층 재전송을 고려한 무선 패킷 스케줄링 알고리즘)

  • Kim, Nam-Gi;Yoon, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.98-106
    • /
    • 2005
  • We propose a new wireless fair queueing algorithm, WFQ-R (Wireless Fair Queueing with Retransmission), which is well matched with the LLR (Link Level Retransmission) algorithm and does not require channel prediction. In the WFQ-R algorithm, the share consumed by retransmission is regarded as a debt of the retransmitted flow to the other flows. Thus, the WFQ-R algorithm achieves wireless fairness with the LLR algorithm by penalizing flows that use wireless resources without permission under the MAC layer. Through simulations, we showed that our WFQ-R algorithm maintains fairness adaptively and maximizes system throughput. Furthermore, our WFQ-R algorithm is able to achieve flow separation and compensation.

LTE Packet Scheduling with Bandwidth Type Consideration

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.351-357
    • /
    • 2022
  • LTE (Long-Term Evolution, sometimes known as 4G LTE) is a wireless high-speed data communication technology for mobile phones and data terminals. The Packet Scheduler (PS) is an important component in improving network performance. Physical Resource Blocks (PRBs) are assigned to associated User Equipment by the packet scheduler (UEs). The primary contribution of this study is a comparison of the eNodeB throughput between a suggested method and the Round Robin (RR) Algorithm. The RR Algorithm distributes PRBs among all associated UEs without taking channel circumstances into account. In this research, we present a new scheduling method that takes into account the number of PRBs and associated UEs and produces higher throughput than the RR algorithm.

Packet Scheduling Algorithm Considering a Minimum Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access System

  • Kim, Dong-Hoi;Ryu, Byung-Han;Kang, Chung-Gu
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • In this letter, we consider a new packet scheduling algorithm for an orthogonal frequency division multiplexing access/frequency division duplex (OFDMA/FDD)-based system, e.g., mobile broadband wireless access or high-speed portable internet systems, in which the radio resources of both time and frequency slots are dynamically shared by all users under a proper scheduling policy. Our design objective is to increase the number of non-realtime service (e.g., WWW) users that can be supported in the system, especially when the minimum bit rate requirement is imposed on them. The simulation results show that our proposed algorithm can provide a significant improvement in the average outage probability performance for the NRT service, i.e., significantly increasing the number of NRT users without much compromising of the cell throughput.

  • PDF

Study of Radio Resource Allocation Method for Wireless Broadband Internet System (휴대인터넷 무선자원 할당 연구)

  • Kook Kwang-Ho;Kim Kyung-Hee;Baek Jang-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.145-154
    • /
    • 2006
  • WiBro (Wireless Broadband Internet) system is going to be 9ot down to commercialization. The high portable internet system is able to be connected to the high-speed internet using 2.3 GHz frequency bandwidth, anytime and anywhere. An effective scheduling for UGS, rtPS, nrtPS and BE requiring different QoS, which are service types of the WiBro, is necessary to increase the efficiency of radio channels that are the limiting resource. This paper researches an uplink scheduling that plays a role in assignment for the radio channels from subscribers to base stations. The suggested scheduling provides priorities with each service type considering QoS of them but reserves some bandwidth for lower priory services. After deciding effective amount of bandwidth for reservation, we suggest analytical result on mean delayed time of packet transmission for each terminal, transmission rate for the data, and capacity for uplink. This research can be used as basic data for the standard in the high portable internet system and as data to predict the capacity of base stations.

Study of the radio resource allocation method of the Wireless Broadband Internet System (휴대인터넷 무선자원 할당 연구)

  • Guk, Gwang-Ho;Kim, Gyeong-Hui;Baek, Jang-Hyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.347-353
    • /
    • 2005
  • WiBro (Wireless Broadband Internet) system is going to be commercialized before long. The high portable internet system is abie to be connected to the high-speed internet using 2.3 CHz frequency bandwidth, anytime and anywhere. An effective scheduling for UCS, rtPS. nrtPS and BE requiring different QoS, which are service types of the WiBro, is necessary to increase the efficiency of radio channels that arc the limiting resource. This paper researches an uplink scheduling that plays a role in assignment for the radio channels from subscribers to base stations. The suggested scheduling provides priorities With each service type considering QoS of them but reserves some bandwidth for lower priory services. After deciding effective amount of bandwidth for reservation, we suggest analytical result on mean delayed time of packet transmission for each terminal, transmission rate for the data, and capacity for uplink. This research can be used as basic data for the standard in the high portable internet system and as data to predict the capacity of base stations.

  • PDF

An Efficient Priority Based Adaptive QoS Traffic Control Scheme for Wireless Access Networks

  • Kang Moon-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.762-771
    • /
    • 2005
  • In this paper, an efficient Adaptive quality-of-service (QoS) traffic control scheme with priority scheduling is proposed for the multimedia traffic transmission over wireless access networks. The objective of the proposed adaptive QoS control (AQC) scheme is to realize end-to-end QoS, to be scalable without the excess signaling process, and to adapt dynamically to the network traffic state according to traffic flow characteristics. Here, the reservation scheme can be used over the wireless access network in order to get the per-flow guarantees necessary for implementation of some kinds of multimedia applications. The AQC model is based on both differentiated service model with different lier hop behaviors and priority scheduling one. It consists of several various routers, access points, and bandwidth broker and adopts the IEEE 802.1 le wireless radio technique for wireless access interface. The AQC scheme includes queue management and packet scheduler to transmit class-based packets with different per hop behaviors (PHBs). Simulation results demonstrate effectiveness of the proposed AQC scheme.