• Title/Summary/Keyword: Wireless operation

Search Result 948, Processing Time 0.025 seconds

Wireless Sensor Network Development using RFID for Agricultural Water Management (농업용수관리를 위한 RFID 기반 무선 센서 네트워크 개발)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Kim, Jin-Taek;La, Min-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.43-51
    • /
    • 2011
  • Irrigation facilities are spread over demand area in a low density and exposed in the field requiring efficient operation and maintenance. Thus, it could be more efficient to manage an irrigation system when it is with wireless sensor network (WSN) using RFID (Radio Frequency Identification) application. A WSN, a kind of ubiquitous sensor network composed of wireless network, RFID and database management system was developed for agricultural water management in terms of operational status and maintenance requirements. Identification code for RFID tag was designed and an application for RFID reader was developed for field data collection, and a database management system was constructed for managing irrigation facility attributes. The system was installed in I-dong irrigation districts in Gyounggi-province, Korea and the operated results showed the applicability of the WSN for agricultural water management.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

On the Selection of Burst Preamble Length for the Symbol Timing Estimate in the AWGN Channel

  • Lee, Seung-Hwan;Kim, Nam-il;Kim, Eung-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2059-2062
    • /
    • 2002
  • For detection of digitally modulated signals, the receiver must be provide with accurate carrier phase and symbol timing estimates. So far, tots of algorithms have been suggested for those purposes. In general, a interpolation filter with TED(Timing Error Detection) like Gardner algorithm is popularly used for symbol timing estimate of digital communication receiver. Apart from the performance point of view, a multiplicative operation of any interpolation filter limits the symbol rate of the system. Hence, we suggest a new symbol timing estimate algorithm for high speed burst-mode fixed wireless communication system and analyze its performance in the AWGN channel.

  • PDF

A Study on the Multi-wireless Communication Using Cnet Protocol for PLC (Cnet 프로토콜을 이용한 PLC간의 다중무선통신에 관한 연구)

  • Rhyu Keel-Soo;Lee Hoo-Rach;Chung Kyung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.384-390
    • /
    • 2005
  • This paper addresses the design and implementation of a wireless network. proposed as a cost-effective support platform for PLCs. With this network. one or more supervising stations may access remote equipment like PLCs. An applicable communication methods are described and we applied efficient method among them to PLCs communication. The paper specifies these requirements and indicates methods to fulfill them. Also. it provides to the model of operation, and focuses on the implementation approach. The hardware and software design is described together with a number of critical points related to wireless communication on the Cnet. Furthermore, a discussion on system expandability and performance is tackled and some observations are stated. The main conclusion is, that the proposed method can feature good performance under normal operating conditions.

An Improved Wireless Power Charging System Capable of Stable Soft-Switching Operation Even in Wide Air Gaps (넓은 공극 범위에서도 안정된 소프트 스위칭 동작 가능한 개선된 무선 전력 충전 시스템)

  • Woo, Jeong-Won;Moon, Yu-Jin;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.180-191
    • /
    • 2022
  • In this paper, a single-stage alternating current (AC)-DC converter is proposed for the automated-guided vehicle wireless charging system. The proposed converter is capable of soft-switching under all input voltage (VAC: 220 Vrms ± 10%), load conditions (0-1 kW), and air gap changes (40-60 mm) by phase control at a fixed switching frequency. In addition, controlling a wide output voltage (Vo: 39~54 VDC) is possible by varying the link voltage and improving the input power factor and the total harmonic distortion factor. Experimental results were verified by making a prototype of a 1-kW wireless power charging system that operates with robustness to changes in air gaps.

Emergency Brushless Synchronous Generator Having Rotating Exciter Status Monitoring and Protection Functions

  • Oh, Yongseung;Oh, Wonseok;Cho, Kyumin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • This paper presents an emergency brushless synchronous generator having rotating exciter status monitoring and protection functions. For monitoring the rotating exciter status, a wireless rotor status detector and a digital AVR(Automatic Voltage Regulator), which has a wireless communication capability, are proposed. The proposed rotor status detector detects temperatures of exciter armature and main field windings and input voltage and current of the main field. Therefore, it is possible to protect the generator from the over-temperature of windings and detect the exciter bridge diode fault. Furthermore, the proposed digital AVR has rotor status monitoring and protection function, and remote generator tuning, wireless group parallel operation function. So the operator can efficiently operate the generator using a smartphone from a remote area.

Development of Low Power Driven Inner Tap Inspection System capable of Wireless Communication with Video Equipment (영상기기와 무선통신이 가능한 저전력 구동의 이너탭 검사시스템 개발)

  • Ahn, Sung-Su
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.649-658
    • /
    • 2018
  • In this paper, we propose a mechanical contact inner tap inspection system that can inspect the defect of the inner tap immediately after inner tap is processed within the machining center. The inspection module has the collet chuck structure, so it can mounted on the main spindle of the machining center during inspection. It was developed with a focus on inspection for tap having 20 mm depth which is primarily fabricated in automotive parts and has a double sided PCB-type control system including sensing function based on Zigbee module, micom and IR sensor for wireless transmission of measured data with low power operation, and also a battery for supplying electric power. The current consumption is 46.8mA in the inspection operation mode and 0.0268mA in the power saving mode for 3.7V of the applied power source, so that 30,000 times or more inspection can be performed with assumed 5 seconds inspection time for one tap. Experiments in test jig system and actual machining center confirm that the proposed inner tap inspection system can be applied to the batch process of simultaneous inspection after tapping in the machining center.

A Frequency-Tracking Method Based on a SOGI-PLL for Wireless Power Transfer Systems to Assure Operation in the Resonant State

  • Tan, Ping-an;He, Haibing;Gao, Xieping
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1056-1066
    • /
    • 2016
  • Wireless power transfer (WPT) technology is now recognized as an efficient means of transferring power without physical contact. However, frequency detuning will greatly reduce the transmission power and efficiency of a WPT system. To overcome the difficulties associated with the traditional frequency-tracking methods, this paper proposes a Direct Phase Control (DPC) approach, based on the Second-Order Generalized Integrator Phase-Locked Loop (SOGI-PLL), to provide accurate frequency-tracking for WPT systems. The DPC determines the phase difference between the output voltage and current of the inverter in WPT systems, and the SOGI-PLL provides the phase of the resonant current for dynamically adjusting the output voltage frequency of the inverter. Further, the stability of this control method is analyzed using the linear system theory. The performance of the proposed frequency-tracking method is investigated under various operating conditions. Simulation and experimental results convincingly demonstrate that the proposed technique will track the quasi-resonant frequency automatically, and that the ZVS operation can be achieved.

High Frequency (MHz) LLC Resonant Converter for a Capacitor Coupling Wireless Power Transfer (CCWPT) (커패시터 커플링 무선 전력 전송을 위한 MHz LLC 공진형 컨버터)

  • You, Young-Soo;Moon, HyunWon;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2016
  • This paper proposes a high-frequency (MHz) LLC resonant converter for a capacitor coupling wireless power transfer (CCWPT). The CCWPT uses electric field in the coupling capacitor between the transmitter and receiver electrodes with a dielectric layer. Given that capacitance is very small and the impedance is large, transferring power with a simple series resonance is difficult. Therefore, the high frequency (MHz) and high Q factor LLC converter is proposed to reduce the impedance of the coupling capacitance and to obtain a high output voltage. This paper deals with the operation analysis of the proposed LLC converter and a theoretical capacitance estimation. The operation and features of the proposed CCWPT LLC converter is verified with a 4.2 W prototype for charging mobile devices.

A Wireless Optical Identification System Using Solar Cells (솔라 셀을 이용한 무선광 인식 장치)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.494-500
    • /
    • 2010
  • In this paper, we newly propose a wireless optical identification system and carried out experiments. A wireless optical identification system consists of a reader and a transponder. The configuration of a reader is the same as that of a transponder, which uses LED light as transmission media and detects the signal light with a solar cell. Optical alignment with a lens is not required because the absorption area of a solar cell is wide and flat, and it is very easy to attach a solar cell on the surface of an object. As the light wavelength does not interfere with radio frequency, a wireless optical identification system shows stable operation. In experiments, we realized a wireless optical identification system that automatically identifies the transponder data at a distance of 1 m using solar cells.