• Title/Summary/Keyword: Wireless communications

Search Result 3,233, Processing Time 0.028 seconds

A Secure Mobile Message Authentication Over VANET (VANET 상에서의 이동성을 고려한 안전한 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1087-1096
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) using wireless network is offering the communications between vehicle and vehicle(V2V) or vehicle and infrastructure(V2I). VANET is being actively researched from industry field and university because of the rapid developments of the industry and vehicular automation. Information, collected from VANET, of velocity, acceleration, condition of road and environments provides various services related with safe drive to the drivers, so security over network is the inevitable factor. For the secure message authentication, a number of authentication proposals have been proposed. Among of them, a scheme, proposed by Jung, applying database search algorithm, Bloom filter, to RAISE scheme, is efficient authentication algorithm in a dense space. However, k-anonymity used for obtaining the accurate vehicular identification in the paper has a weak point. Whenever requesting the righteous identification, all hash value of messages are calculated. For this reason, as the number of car increases, a amount of hash operation increases exponentially. Moreover the paper does not provide a complete key exchange algorithm while the hand-over operation. In this paper, we use a Received Signal Strength Indicator(RSSI) based velocity and distance estimation algorithm to localize the identification and provide the secure and efficient algorithm in which the problem of hand-over algorithm is corrected.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

Optimum Rake Processing for Multipath Fading in Direct-Sequence Spread-Spectrum Communication Systems (주파수대역 직접확산 통신시스템에서 다중경로 페이딩 보상을 위한 최적 레이크 신호처리에 관한 연구)

  • 장원석;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.995-1006
    • /
    • 2003
  • It is well know that in the wireless communication systems the transmitted signals can suffer from multipath fading due to the wave propagation characteristics and the obstacles over the paths, resulting in serious reduction in the power of the received signals. However, it is possible to take advantage of the inherent diversity imposed in the multipath reception if the underlying channel can be properly estimated. One of the diversity reception methods in this case is Rake processing. In this paper we study the Rake receivers for the direct-sequence spread-spectrum communication systems utilizing PN (pseudo noise) sequences to achieve spread spectrum. A conventional Rake receiver can use the finite-duration impulse (FIR) filter followed by the PN sequence demodulator, where the FIR filter coefficients are the reverse-ordered complex conjugate values of the fading channel impulse response estimates. Here, we propose a new Rake processing method by replacing the aforementioned PN code sequence with a new set of optimum demodulator coefficients. More specifically, the concept of the new optimum Rake processing is first introduced and then the optimum demodulator coefficients are theoretically derived. The performance obtained using the new optimum Rake processing is also calculated. The analytical results are verified by computer simulation. As a result, it is shown that the new optimum Rake processing method improves the MSE performance more than 10 dB over the conventional one using the fixed PN sequence demodulator. It is also shown that the new optimum Rake processing method improves the MSE performance about 10 dB over the Adaptive Correlator that performs the combining of the multipath components and PN demodulation concurrently. And finally, the MSE performance of the optimum Rake demodulator is very close to the MSE performance of OPSK demodulator under the AWGN channel.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

A Study on the Vulnerability Management of Internet Connection Devices based on Internet-Wide Scan (인터넷 와이드 스캔 기술 기반 인터넷 연결 디바이스의 취약점 관리 구조 연구)

  • Kim, Taeeun;Jung, Yong Hoon;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.504-509
    • /
    • 2019
  • Recently, both wireless communications technology and the performance of small devices have developed exponentially, while the number of services using various types of Internet of Things (IoT) devices has also massively increased in line with the ongoing technological and environmental changes. Furthermore, ever more devices that were previously used in the offline environment-including small-size sensors and CCTV-are being connected to the Internet due to the huge increase in IoT services. However, many IoT devices are not equipped with security functions, and use vulnerable open source software as it is. In addition, conventional network equipment, such as switches and gateways, operates with vulnerabilities, because users tend not to update the equipment on a regular basis. Recently, the simple vulnerability of IoT devices has been exploited through the distributed denial of service (DDoS) from attackers creating a large number of botnets. This paper proposes a system that is capable of identifying Internet-connected devices quickly, analyzing and managing the vulnerability of such devices using Internet-wide scan technology. In addition, the vulnerability analysis rate of the proposed technology was verified through collected banner information. In the future, the company plans to automate and upgrade the proposed system so that it can be used as a technology to prevent cyber attacks.

Design and Implementation of Mobile Medical Information System Based Radio Frequency IDentification (RFID 기반의 모바일 의료정보시스템의 설계 및 구현)

  • Kim, Chang-Soo;Kim, Hwa-Gon
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.317-325
    • /
    • 2005
  • The recent medical treatment guidelines and the development of information technology make hospitals reduce the expense in surrounding environment and it requires improving the quality of medical treatment of the hospital. That is, with the new guidelines and technology, hospital business escapes simple fee calculation and insurance claim center. Moreover, MIS(Medical Information System), PACS(Picture Archiving and Communications System), OCS(Order Communicating System), EMR(Electronic Medical Record), DSS(Decision Support System) are also developing. Medical Information System is evolved toward integration of medical IT and situation si changing with increasing high speed in the ICT convergence. These changes and development of ubiquitous environment require fundamental change of medical information system. Mobile medical information system refers to construct wireless system of hospital which has constructed in existing environment. Through RFID development in existing system, anyone can log on easily to Internet whenever and wherever. RFID is one of the technologies for Automatic Identification and Data Capture(AIDC). It is the core technology to implement Automatic processing system. This paper provides a comprehensive basic review of RFID model in Korea and suggests the evolution direction for further advanced RFID application services. In addition, designed and implemented DB server's agent program and Client program of Mobile application that recognized RFID tag and patient data in the ubiquitous environments. This system implemented medical information system that performed patient data based EMR, HIS, PACS DB environments, and so reduced delay time of requisition, medical treatment, lab.

  • PDF

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Improvement of Encoding Detection Algorithm for Multi-byte Encoded Data with Errors (오류가 발생한 멀티바이트 인코딩 데이터의 인코딩 기법 판별 알고리즘 개선)

  • Bae, Junwoo;Kim, Seonbeom;Park, Heejin
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • In computer science, an encoding is a standardization of converting information to one format for audio, video or text. Therefore, the encoding information of the data should be known to open and read it and there are algorithms detecting encoder of the data. However, some informations of data could be disappeared by packet loss when transmitted on network, especially, if the data is snatched by packet sniffing or eavesdropping from wireless communications. In this paper, we improve the performance of encoding detection algorithm of 'uchardet' program for multi-byte encoded data with errors based on bit-shift algorithm. To simulate the performance, we generated Korean and Japanese text data with errors that is removed some random bits at random positions. Then the detection algorithm are tested using the data and 'uchardet-bitshift' showed better performance than 'uchardet'. When Korean texts are used, 'uchardet' could detect perfectly with ≤0.005% errors but it showed 0% detection rate with ≥1% errors while 'uchardet-bitshift' detected perfectly with ≤0.05% errors and it showed correct detection cases with ≥1% errors. Japanese texts with errors tend to report falsely as Chinese encoding because Japanese texts include lots of Chinese characters. As a results, we improved encoding detection algorithms by applying bit shift operation.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.