• Title/Summary/Keyword: Wireless Sensor and Actuator Networks

Search Result 15, Processing Time 0.036 seconds

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

A Node Scheduling Control Scheme with Time Delay Requirement in Wireless Sensor Actuator Networks (무선 센서 엑츄에이터 네트워크에서의 시간지연을 고려한 노드 스케줄링 제어 기법)

  • Byun, Heejung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.17-23
    • /
    • 2016
  • Wireless sensor-actuator networks (WSANs) enhance the existing wireless sensor networks (WSNs) by equipping sensor nodes with an actuator. The actuators work with the sensor nodes and perform application-specific operations. The WSAN systems have several applications such as disaster relief, intelligent building, military surveillance, health monitoring, and infrastructure security. These applications require capability of reliable data transfer to act responsively and accurately. Biologically inspired modeling techniques have received considerable attention for achieving robustness, scalability, and adaptability, while retaining individual simplicity. In this paper, an epidemic-inspired algorithm for data dissemination with delay constraints while minimizing energy consumption in WSAN is proposed. The steady states and system stability are analyzed using control theory. Also, simulation results indicate that the proposed scheme provides desirable dissemination delay and energy saving.

Clustering Algorithm of Hierarchical Structures in Large-Scale Wireless Sensor and Actuator Networks

  • Quang, Pham Tran Anh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.473-481
    • /
    • 2015
  • In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for subclusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.

A Study on the Actuator for Robot Control Using Wireless ZigBee Sensor Networks

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.227-234
    • /
    • 2011
  • The Interest in robotics has been steadily increasing in recent times both in Korea as well as abroad. Research on robots for new and diverse fields is ongoing. This study discusses the current research and development on robot actuator, which are used to control the joints of robots, and focuses on developing more efficient technology for joint control, as compared with the current technologies. It also aims to find means to apply the abovementioned technology to diverse industrial fields. We found that easy and effective control of actuators could be achieved by using ZigBee sensor networks, which were widely being used on wireless communications. Throughout the experiments it is proved that the developed wireless actuator could be used for easy control of various robot joints. This technology can be effectively applied to develop two-legged robots that will be able to walk like human, or even quadruped and hexapod robots. It can also be applied to motors used in industry. In this study, we develop an extremely minimized ZigBee sensor network module that can be used to control various servo motors with low power consumption even if it is long distances. We realized effective wireless control by optimizing the ZigBee antenna, and were able to quickly check the status of relevant Tree node through mutual communication between the servo motors composing the ZigBee sensor network and the main server control modules. The developed Servo Motor with ZigBee sensor network modules can be applied in both robotics as well as for home or factory automation.

Design and Implementation of Real-Time Vehicle Safety System based on Wireless Sensor Networks (무선 센서 네트워크 기반의 실시간 차량 안전 시스템 설계 및 구현)

  • Hong, YouSik;Oh, Sei-JIn;Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wireless sensor networks achieve environment monitoring and controlling through use of small devices of low cost and low power. Such network is comprised of several sensor nodes, each having a microprocessor, sensor, actuator and wired/wireless transceiver inside a small device. In this paper, we employ the sensor networks in order to design and implement a real-time vehicle safety system. Such system can inform the safe velocity in a specific weather condition to drivers in advance through analyzing the weather data collected from sensor networks. As a result, the drivers can prevent effectively accidents by controlling their car speed.

  • PDF

When Sensor and Actuator Networks Cover the World

  • Stankovic, John A.
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.627-633
    • /
    • 2008
  • The technologies for wireless communication, sensing, and computation are each progressing at faster and faster rates. Notably, they are also being combined for an amazingly large multiplicative effect. It can be envisioned that the world will eventually be covered by networks of networks of smart sensors and actuators. This fact will give rise to revolutionary applications. However, to make this vision a reality, many research challenges must be overcome. This paper describes a representative set of new applications and identifies several key research challenges.

  • PDF

Prolonging Network Lifetime by Optimizing Actuators Deployment with Probabilistic Mutation Multi-layer Particle Swarm Optimization

  • Han, Yamin;Byun, Heejung;Zhang, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2959-2973
    • /
    • 2021
  • In wireless sensor and actuator networks (WSANs), the network lifetime is an important criterion to measure the performance of the WSAN system. Generally, the network lifetime is mainly affected by the energy of sensors. However, the energy of sensors is limited, and the batteries of sensors cannot be replaced and charged. So, it is crucial to make energy consumption efficient. WSAN introduces multiple actuators that can be regarded as multiple collectors to gather data from their respective surrounding sensors. But how to deploy actuators to reduce the energy consumption of sensors and increase the manageability of the network is an important challenge. This research optimizes actuators deployment by a proposed probabilistic mutation multi-layer particle swarm optimization algorithm to maximize the coverage of actuators to sensors and reduce the energy consumption of sensors. Simulation results show that this method is effective for improving the coverage rate and reducing the energy consumption.

A Design of Wireless Mesh Networks based middleware (Wireless Mesh Networks 기반 미들웨어 설계)

  • Im, Hyeok-Jin;Kang, Hyun-Joong;Ju, Hui-Dong;Lee, Myeong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.453-456
    • /
    • 2007
  • In this paper, we describes a design of Wireless Mesh Network based middleware that applied into USN(Ubiquitous Sensor Networks). WMN based middleware is a technique which links data between widely distributed sensor devices and WMN for context-awareness. The use of WMN base middleware in this paper makes possible communication on insufficiently network constructed area by use of WMN. WMN based middleware also anaylze events comprehensively that originated from specific sensor device. Based on the result from analyzed data with predetermined value WMN based middleware will given an order to designated actuator devices. Middleware operate each function of sensor network management and application service separately.

  • PDF

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.