• Title/Summary/Keyword: Wireless Power Transmission

Search Result 995, Processing Time 0.03 seconds

Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks (무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘)

  • Gao, Xiang;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

Control Packet Transmission Decision Method for Wearable Sensor Systems (웨어러블 센서 시스템에서의 제어 패킷 전송 결정 기법)

  • Yu, Daeun;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2015
  • In the general transmission power control model that is used for wearable sensor systems, if RSSI value gets out of the Target RSSI Margin, then the sink node finds new transmission power by using TPC(Transmission Power Control) Algorithm. At this time, the sink node sends the control packet to the sensor node for delivering the newly calculated transmission power. However, when the wireless network channel condition is poor, even it is consuming a lot of control packets, the sink node could not find an appropriate transmission power so it only waste of energy. Therefore, we proposed a new control packet transmission decision method that the sink node changes the transmission power when the wireless network channel condition is stabilized. It makes waste of energy decline. In this paper, we apply control packet transmission decision method to Binary TPC algorithms and analyze the results to evaluate the proposed method. We propose three methods that judge the state of wireless network channel. We experiment that methods and analysis the results.

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Design of Two-Dimensional Lateral Antenna for Wireless Power Transmission to In Vivo Robotic Capsule

  • Kim, Jong-Dae;Lee, Seon-Woo;Ryu, Mun-Ho;Kim, Jong-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.187-190
    • /
    • 2008
  • This paper presents two dimensional receiving coils to provide hundreds of milli-watt power via inductive link to in vivo robotic capsules, whose orientation are practically undetermined. The wireless power transmission system consists of a transmitter powered by class E power amplifier, and a receiver with three dimensional antenna, rectifier, and voltage regulator. As the 2D lateral antenna construction is more critical for the receiving antenna, two types of 2D antennas are introduced and evaluated by theoretic and experimental analyses. Experimental results verifies that the cross-type construction show better directional performance for receiving power than the cylindrical one for the 2D antenna. The former could deliver the power homogeneously regardless of its orientation, with less than 20 % of variation from the possible maximum power.

Smart Phone RF Wireless Charging with 5.8-GHz Microwave Wireless Power Receiver (5.8-GHz무선전력수신기를 이용한 스마트폰 RF 무선충전)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.25-28
    • /
    • 2021
  • In this paper, we studied smart phone RF wireless charging with 5.8-GHz microwave wireless power receiver. The dc output of the receiver connected to super capacitor and DC-DC converter for charging a smart phone. This configuration stably supplies 5V and current for charging it. Studies show that the more receivers are used at close range, the higher the received voltage values and the larger the capacity of the super capacitor, the longer the charging time. The present 5.8-GHz 1W wireless power transmission system is not enough for charging a smartphone mainly due to the lack of current of the receiver.

A Study On Design of Resonance Frequency for Wireless Power Transfer with Magnetic Resonance Type (자기공명형 무선전력송신을 위한 공진 주파수 설계에 관한 연구)

  • Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.206-210
    • /
    • 2012
  • In this paper wireless power transmission is discussed. The concept of non-radiative magnetic coupled resonance type wireless power transmission was introduced by MIT team at 2007, non-radiative type has been focused by many researchers. Authors present design of circuit parameters including driving frequency and verify the design by computer simulation.

A Residual Power Estimation Scheme Using Machine Learning in Wireless Sensor Networks (센서 네트워크에서 기계학습을 사용한 잔류 전력 추정 방안)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • As IoT(Internet Of Things) devices like a smart sensor have constrained power sources, a power strategy is critical in WSN(Wireless Sensor Networks). Therefore, it is necessary to figure out the residual power of each sensor node for managing power strategies in WSN, which, however, requires additional data transmission, leading to more power consumption. In this paper, a residual power estimation method was proposed, which uses ignorantly small amount of power consumption in the resource-constrained wireless networks including WSN. A residual power prediction is possible with the least data transmission by using Machine Learning method with some training data in this proposal. The performance of the proposed scheme was evaluated by machine learning method, simulation, and analysis.

Comparative Study on the Power Transfer Efficiency of Magnetic Resonance and Radio Frequency Wireless Power Transmission

  • Kim, Ye-Chan;Choi, Bo-Hee;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.232-234
    • /
    • 2016
  • In this paper, the power transfer efficiencies (PTEs) of magnetic resonance (MR) wireless power transmission (WPT) and radio frequency (RF) WPT are compared as a function of the distances between resonators (or antennas). The PTE of the C-loaded loop resonators during MR WPT was theoretically calculated and simulated at 6.78MHz, showing good agreement. The PTE of the patch antennas, whose area is the same as the C-loaded loop resonator during MR WPT, was theoretically calculated using the Friis equation and the equation by N. Shinohara and simulated at 5.8 GHz. The three results from the Friis equation, the equation by N. Shinohara, and from a full wave simulation are in strong agreement. The PTEs, when using the same size resonators and antennas are compared by considering the distance between the receiver and transmitter. The compared results show that the MR WPT PTE is higher than that of the RF WPT PTE when the distance (r) between the resonators (or antennas) is shorter. However, the RF WPT PTE is much higher than that of the MR WPT PTE when the distance (r) between the resonators (or antennas) is longer since the RF WPT PTE is proportional to $r^{-2}$ while the MR WPT PTE is proportional to $r^{-6}$.