• Title/Summary/Keyword: Wireless Multimedia Sensor Network

Search Result 128, Processing Time 0.021 seconds

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks (2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘)

  • Kim, Sung-Un;Park, Seon-Yeong;Cheon, Hyun-Soo;Kim, Kun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1657-1666
    • /
    • 2010
  • Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

Extension of Wireless Sensor Network Lifetime with Variable Sensing Range Using Genetic Algorithm (유전자알고리즘을 이용한 가변감지범위를 갖는 무선센서네트워크의 수명연장)

  • Song, Bong-Gi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.728-736
    • /
    • 2009
  • We propose a method using the genetic algorithm to solve the maximum set cover problem. It is needed for scheduling the power of sensor nodes in extending the lifetime of the wireless sensor network with variable sensing range. The existing Greedy Heuristic method calculates the power scheduling of sensor nodes repeatedly in the process of operation, and so the communication traffic of sensor nodes is increased. The proposed method reduces the amount of communication traffic of sensor nodes, and so the energies of nodes are saved, and the lifetime of network can be extended. The effectiveness of this method was verified through computer simulation, and considering the energy losses of communication operations about 10% in the network lifetime is improved.

  • PDF

Data-centric Energy-aware Re-clustering Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 데이터 중심의 에너지 인식 재클러스터링 기법)

  • Choi, Dongmin;Lee, Jisub;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.590-600
    • /
    • 2014
  • In the wireless sensor network environment, clustering scheme has a problem that a large amount of energy is unnecessarily consumed because of frequently occurred entire re-clustering process. Some of the studies were attempted to improve the network performance by getting rid of the entire network setup process. However, removing the setup process is not worthy. Because entire network setup relieves the burden of some sensor nodes. The primary aim of our scheme is to cut down the energy consumption through minimizing entire setup processes which occurred unnecessarily. Thus, we suggest a re-clustering scheme that considers event detection, transmitting energy, and the load on the nodes. According to the result of performance analysis, our scheme reduces energy consumption of nodes, prolongs the network lifetime, and shows higher data collection rate and higher data accuracy than the existing schemes.

An Implementation of High-performance Router Platform Supporting IPv6 that can High-speed Wired/wireless Interface and QoS (IPv6를 지원하는 초고속 유/무선 인터페이스와 QoS제공 가능한 고성능 라우터 플랫폼 개발)

  • Ryoo, Kwang-Seok;Seo, In-Ho;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.229-235
    • /
    • 2017
  • Until now, a study on a ubiquitous sensor network has been mainly concentrated in the areas of sensor nodes, and as a results, technologies related with sensor node were greatly developed. Despite of many achievements on research and development for a sensor node, a ubiquitous sensor network may failed to establish the actual service environment because variety of restrictions. In order to provide a actual service using a ubiquitous sensor networks applied to many results on research and development for a sensor nodes, a study on a wired/wireless composite router must be carried out. However a study on a wired/wireless composite router is relatively very slow compared with the sensor node. In this study, developed a high-performance router platform supporting IPv6 that can provide high-speed wired/wireless interface and QoS, and it can provide the multimedia service Interlocking the wireless sensor network and the Internet network. To analysis a given network environment and to develop the appropriate hardware and software in accordance with this requirement.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

Design and Implementation of Multimedia Sensor Networks with Image Sensor (이미지 센서를 이용한 멀티미디어 센서 네트워크의 설계 및 구현)

  • Lee, Joa-Hyoung;Jo, Young-Tae;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.615-622
    • /
    • 2009
  • Advances in wireless communication and hardware technology have made it possible to manufacture high-performance tiny sensor nodes. More recently, the availability of inexpensive CMOS cameras that are able to capture multimedia data from the environment has fostered the development of Wireless Multimedia Sensor Networks (WMSNs). WMSN with the CMOS imaging sensor which is cheaper and consumes lower power than the CCD will not only enhance existing sensor network but also enable several new application such as multimedia surveillance sensor network, multimedia environment monitoring. This paper presents the design of a multimedia sensor network with the image sensor mote developed by us using the CMOS. Given new multimeida sensor network, the new image collecting protocol was tested and analyzed.

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

Impact of Sink Node Location in Sensor Networks: Performance Evaluation (센서 네트워크에서 싱크 노드 위치가 성능에 미치는 영향 분석)

  • Choi, Dongmin;Kim, Seongyeol;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.977-987
    • /
    • 2014
  • Many of the recent performance evaluation of clustering schemes in wireless sensor networks considered one sink node operation and fixed sink node location without mentioning about any network application requirements. However, application environments have variable requirements about their networks. In addition, network performance is sufficiently influenced by different sink node location scenarios in multi-hop based network. We also know that sink location can influence to the sensor network performance evaluation because of changed multipath of sensor nodes and changed overload spots in multipath based wireless sensor network environment. Thus, the performance evaluation results are hard to trust because sensor network is easily changed their network connection through their routing algorithms. Therefore, we suggest that these schemes need to evaluate with different sink node location scenarios to show fair evaluation result. Under the results of that, network performance evaluation results are acknowledged by researchers. In this paper, we measured several clustering scheme's performance variations in accordance with various types of sink node location scenarios. As a result, in the case of the clustering scheme that did not consider various types of sink location scenarios, fair evaluation cannot be expected.