• Title/Summary/Keyword: Wireless Multi-hop systems

Search Result 118, Processing Time 0.026 seconds

A Random Deflected Subgradient Algorithm for Energy-Efficient Real-time Multicast in Wireless Networks

  • Tan, Guoping;Liu, Jianjun;Li, Yueheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4864-4882
    • /
    • 2016
  • In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.

Efficient Radio Resource Allocation for Cognitive Radio Based Multi-hop Systems (다중 홉 무선 인지 시스템에서 효과적인 무선 자원 할당)

  • Shin, Jung-Chae;Min, Seung-Hwa;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.325-338
    • /
    • 2012
  • In this paper, a radio resource allocation scheme for a multi-hop relay transmission in cognitive radio (CR) system is proposed to support the employment of relay nodes in IEEE 802.22 standard for wireless regional area network (WRAN). An optimization problem is formulated to maximize the number of serving secondary users (SUs) under system constraints such as time-divided frame structure for multiplexing and a single resource-unit to every relay-hop. However, due to mathematical complexity, the optimization problem is solved with a sub-optimal manner instead, which takes three steps in the order of user selection, relay/path selection, and frequency selection. In the numerical analysis, this proposed solution is evaluated in terms of service rate denoting as the ratio of the number of serving SUs to the number of service-requesting SUs. Simulation results show the condition of adopting multi-hop relay and the optimum number of relaying hops by comparing with the performance of 1-hop system.

A Design and Implementation of MPLS Based Wireless Mesh Network (MPLS기반 메쉬 네트워크 설계 및 구현)

  • Kim, Young-Han;Kim, Jeong-Myun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • Recently, wireless mesh networks are used in various application areas. However, wireless mesh networks have limited bandwidth by the wireless transmission property, and have severe throughput degradation in multi-hop transmission in single channel wireless mesh networks. To solve this problem and support QoS, a lot of routing protocols have been proposed in mesh networks. In this paper, we propose a wireless mesh networks architecture with MPLS for QoS service. The path and traffic management from the application could be independent from QoS routing protocols by using the MPLS in wirelss mesh networks. In this paper, we design a MPLS-based mesh router with IEEE 802.11e for traffic differentiation and investigate the operation by implementation and test.

Control Message Transmission Radius for Energy-efficient Clustering in Large Scale Wireless Sensor Networks (스케일이 큰 무선 센서 네트워크에서 에너지 효율적인 클러스터링을 위한 제어 메시지 전송반경)

  • Cui, Huiqing;Kang, Sang Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Wireless sensor networks consist of a large number of tiny sensor nodes which have limited battery life. In order to maximize the network life span, we propose an optimal transmission radius, R, for control messages. We analyze the transmission radius as a function of the energy consumption of cluster head nodes and the energy consumption of member nodes to find the optimal value of R. In simulations we apply our proposed optimization of transmission range to LEACH-based single-hop and multi-hop networks to show that our proposed scheme outperforms other existing routing algorithms in terms of network life span.

A Hexagon Tessellation Approach for the Transmission Energy Efficiency in Underwater Wireless Sensor Networks

  • Kim, Sung-Un;Cheon, Hyun-Soo;Seo, Sang-Bo;Song, Seung-Mi;Park, Seon-Yeong
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • The energy efficiency is a key design issue to improve the lifetime of the underwater sensor networks (UWSN) consisting of sensor nodes equipped with a small battery of limited energy resource. In this paper, we apply a hexagon tessellation with an ideal cell size to deploy the underwater sensor nodes for two-dimensional UWSN. Upon this setting, we propose an enhanced hybrid transmission method that forwards data packets in a mixed transmission way based on location dependent direct transmitting or uniform multi-hop forwarding. In order to select direct transmitting or uniform multi-hop forwarding, the proposed method applies the threshold annulus that is defined as the distance between the cluster head node and the base station (BS). Our simulation results show that the proposed method enhances the energy efficiency compared with the existing multi-hop forwarding methods and hybrid transmission methods

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.

A Survey on Asynchronous Quorum-Based Power Saving Protocols in Multi-Hop Networks

  • Imani, Mehdi;Joudaki, Majid;Arabnia, Hamid R.;Mazhari, Niloofar
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1436-1458
    • /
    • 2017
  • Quorum-based algorithms are widely used for solving several problems in mobile ad hoc networks (MANET) and wireless sensor networks (WSN). Several quorum-based protocols are proposed for multi-hop ad hoc networks that each one has its pros and cons. Quorum-based protocol (QEC or QPS) is the first study in the asynchronous sleep scheduling protocols. At the time, most of the proposed protocols were non-adaptive ones. But nowadays, adaptive quorum-based protocols have gained increasing attention, because we need protocols which can change their quorum size adaptively with network conditions. In this paper, we first introduce the most popular quorum systems and explain quorum system properties and its performance criteria. Then, we present a comparative and comprehensive survey of the non-adaptive and adaptive quorum-based protocols which are subsequently discussed in depth. We also present the comparison of different quorum systems in terms of the expected quorum overlap size (EQOS) and active ratio. Finally, we summarize the pros and cons of current adaptive and non-adaptive quorum-based protocols.

A Study on WSN based Low Power Fire Prevention System (무선 센서 네트워크 기반 저전력 화재방재 시스템을 위한 전송 프로토콜 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qi Gui;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.535-538
    • /
    • 2010
  • In this paper, this study goal is development for WSN-based fire prevention systems of using temperature/humidity Sensor. So, distributed sensor nodes structural and packet transfer characteristics study for fire monitoring. Battery-operated wireless sensor networks is data transfer manner of multi-hop. WSN fire prevention system need to sensor nodes management and energy consumption of efficient adjust for sustained action. Thus, study with efficient energy consumption the normal WSN environment is not, characteristics for WSN fire prevention environment.

  • PDF

FENC: Fast and Efficient Opportunistic Network Coding in wireless networks

  • Pahlavani, Peyman;Derhami, Vali;Bidoki, Ali Mohammad Zareh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2011
  • Network coding is a newly developed technology that can cause considerable improvements in network throughput. COPE is the first network coding approach for wireless mesh networks and it is based on opportunistic Wireless Network Coding (WNC). It significantly improves throughput of multi-hop wireless networks utilizing network coding and broadcast features of wireless medium. In this paper we propose a new method, called FENC, for opportunistic WNC that improves the network throughput. In addition, its complexity is lower than other opportunistic WNC approaches. FENC utilizes division and conquer method to find an optimal network coding. The numerical results show that the proposed opportunistic algorithm improves the overall throughput as well as network coding approach.

Low-power Environmental Monitoring System for ZigBee Wireless Sensor Network

  • Alhmiedat, Tareq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4781-4803
    • /
    • 2017
  • Environmental monitoring systems using Wireless Sensor Networks (WSNs) face the challenge of high power consumption, due to the high levels of multi-hop data communication involved. In order to overcome the issue of fast energy depletion, a proof-of-concept implementation proves that adopting a clustering algorithm in environmental monitoring applications will significantly reduce the total power consumption for environment sensor nodes. In this paper, an energy-efficient WSN-based environmental monitoring system is proposed and implemented, using eight sensor nodes deployed over an area of $1km^2$, which took place in the city of Tabuk in Saudi Arabia. The effectiveness of the proposed environmental monitoring system has been demonstrated through adopting a number of real experimental studies.