• Title/Summary/Keyword: Wireless Location Estimation

Search Result 115, Processing Time 0.033 seconds

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Localization Algorithm for Wireless Sensor Networks Based on Modified Distance Estimation

  • Zhao, Liquan;Zhang, Kexin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1158-1168
    • /
    • 2020
  • The distance vector-hop wireless sensor node location method is one of typical range-free location methods. In distance vector-hop location method, if a wireless node A can directly communicate with wireless sensor network nodes B and C at its communication range, the hop count from wireless sensor nodes A to B is considered to be the same as that form wireless sensor nodes A to C. However, the real distance between wireless sensor nodes A and B may be dissimilar to that between wireless sensor nodes A and C. Therefore, there may be a discrepancy between the real distance and the estimated hop count distance, and this will affect wireless sensor node location error of distance vector-hop method. To overcome this problem, it proposes a wireless sensor network node location method by modifying the method of distance estimation in the distance vector-hop method. Firstly, we set three different communication powers for each node. Different hop counts correspond to different communication powers; and so this makes the corresponding relationship between the real distance and hop count more accurate, and also reduces the distance error between the real and estimated distance in wireless sensor network. Secondly, distance difference between the estimated distance between wireless sensor network anchor nodes and their corresponding real distance is computed. The average value of distance errors that is computed in the second step is used to modify the estimated distance from the wireless sensor network anchor node to the unknown sensor node. The improved node location method has smaller node location error than the distance vector-hop algorithm and other improved location methods, which is proved by simulations.

Performance Analysis on an Object Location Estimation Algorithm Using a Single Receiver (단일 수신기를 이용한 객체 위치추정 알고리즘 성능평가)

  • Myagmar, Enkhzaya;Kwon, Soonryang;Lee, Dong Myung
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.264-271
    • /
    • 2015
  • The general way to use a triangulation method is based on PTMP communication between an object and wireless modules in an environment, which is established by more than three wireless modules, to recognize the location of an object. Thus, this method has a problem that the PTMP-based system can only be applied in an environment where the wireless infra is already established. In order to solve this problem, the PTP communication schemes have been proposed but they are insufficient to generalize because they lack specific verification. In this paper, problems of an existed location estimation algorithm based on PTP communication are analyzed, and we propose a location estimation algorithm of a fixed object that satisfyies the condition of a single receiver being substituted to multiple receivers. A location estimation system we designed and implemented using CSS wireless communication modules to evaluate the proposed algorithm. We verify, by experimental results, that the optimum moving interval for the location estimation is 3m in indoor environment of $10m{\times}16m{\times}1m$.

Location Estimation Method of Wireless Nurse Call System using the SOFM (SOFM을 이용한 Wireless Nurse Call System의 위치추정방식)

  • Choi, Jeong Yeon;Jung, Kyung Kwon;Hyun, Kyo Hwan;Park, Sun Ho;Park, Min Sup;Eom, Ki Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.326-329
    • /
    • 2009
  • When a patient did emergency call, only the name of the patient and a hospital room are shown to nurse's terminal. So, it's so difficult that a nurse looks for the location of the patient. Therefore we have much time about search patient when a patient does emergency call at the other places of their hospital room. This paper proposed optimal repeater's location using SOFM and patient's location estimation using repeater's location information and RSSI database. We performed simulations on searching patient's location using location estimation algorithm.

  • PDF

NLOS Signal Effect Cancellation Algorithm for TDOA Localization in Wireless Sensor Network

  • Kang, Chul-Gyu;Lee, Hyun-Jae;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2010
  • In this paper, the iteration localization algorithm that NLOS signal is iteratively removed to get the exact location in the wireless sensor network is proposed. To evaluate the performance of the proposed algorithm, TDOA location estimation method is used, and readers are located on every 150m intervals with rectangular shape in $300m{\times}300m$ searching field. In that searching field, the error distance is analyzed according to increasing the number of iteration, sub-blink and the estimated sensor node locations which are located in the iteration range. From simulation results, the error distance is diminished according to increasing the number of the sub-blink and iteration with the proposed location estimation algorithm in NLOS environment. Therefore, to get more accurate location information in wireless sensor network in NLOS environments, the proposed location estimation algorithm removing NLOS signal effects through iteration scheme is suitable.

Development of Position Recognition System by Wireless Communication (무선통신을 이용한 위치인식 시스템 개발)

  • Sohn, Jong-Hoon;Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1477-1486
    • /
    • 2013
  • In this paper, Implementation of location estimation system using wireless communication technology based on Zigbee. Using wireless communication technology, calculation more accurate location information and service location information to the H/W and S/W has been developed. Receivers, repeaters, smart tag(location device), was developed for implement a location estimation system. The smart tag is built the 120~130KHz, 13~14MHz, 2.0~3.0GHz radio frequency tag. Receiver and repeater is applied to the tag module to recognize the location device's active RFID tags transmit a wireless signal for tag identification. Common Entrance control system in contact with a smart tag, It was implemented to transfer the value of the tag to the access control server over a LAN.

Intelligent mobile Robot with RSSI based Indoor Location Estimation function (RSSI기반 위치인식기능 지능형 실내 자율 이동로봇)

  • Yoon, Ba-Da;Shin, Jae-Wook;Kim, Seong-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.449-452
    • /
    • 2007
  • An intelligent robot with RSSI based indoor location estimation function was designed and implemented. A wireless sensor node was attached to the robot to received the location data from the indoor location estimation function. Spartan III was used as the main control device in the mobile robot. The current location data collected from the indoor location estimation system was transferred to the mobile robot and server through Zigbee/IEEE 802.15.4 wireless communication of the sensor node. Once the location data is received, the sensor node senses the direction of the robot head and directs the robot to move to its destination. Indoor location estimation intelligent robot is able to move efficiently and actively to the user appointed location by implementing the proposed obstacles avoidance algorithm. This system is able to monitor real-time environmental data and location of the robot using PC program. Indoor location estimation intelligent robot also can be controlled by executing the instructions sent from the PC program.

  • PDF

Indoor Location Estimation and Navigation of Mobile Robots Based on Wireless Sensor Network and Fuzzy Modeling (무선 센서 네트워크와 퍼지모델을 이용한 이동로봇의 실내 위치인식과 주행)

  • Kim, Hyun-Jong;Kang, Guen-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Navigation system based on indoor location estimation is one of the core technologies in mobile robot systems. Wireless sensor network has great potential in the indoor location estimation due to its characteristics such as low power consumption, low cost, and simplicity. In this paper we present an algorithm to estimate the indoor location of mobile robot based on wireless sensor network and fuzzy modeling. ZigBee-based sensor network usually uses RSSI(Received Signal Strength Indication) values to measure the distance between two sensor nodes, which are affected by signal distortion, reflection, channel fading, and path loss. Therefore we need a proper correction method to obtain accurate distance information with RSSI. We develop the fuzzy distance models based on RSSI values and an efficient algorithm to estimate the robot location which applies to the navigation algorithm incorporating the time-varying data of environmental conditions which are received from the wireless sensor network.

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.