• Title/Summary/Keyword: Wireless Keyboard

Search Result 24, Processing Time 0.031 seconds

Vulnerability Verification of 27 MHz Wireless Keyboards (27MHz 무선 키보드의 취약성 분석)

  • Kim, Ho-Yeon;Sim, Bo-Yeon;Park, Ae-Sun;Han, Dong-Guk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2145-2152
    • /
    • 2016
  • Internet generalization has led to increased demands for Internet banking. Various security programs to protect authentication information are being developed; however, these programs cannot protect the wireless communication sections of wireless keyboards. In particular, vulnerabilities have been reported in the radio communication sections of 27 MHz wireless keyboards. In this paper, we explain how to analyze M's 27 MHz wireless keyboard. We also experimentally show that an attacker can acquire authentication information during domestic Internet banking using a 27 MHz wireless keyboard. To do this, we set up an experimental encironment to analyze the electromagnetic signal of a 27 MHz wireless keyboard.

Building of Remote Control Attack System for 2.4 GHz Wireless Keyboard Using an Android Smart Phone (안드로이드 스마트폰을 이용한 2.4 GHz 무선 키보드 원격제어 공격 시스템 구축)

  • Lee, Su-Jin;Park, Aesun;Sim, Bo-Yeon;Kim, Sang-su;Oh, Seung-Sup;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.871-883
    • /
    • 2016
  • It has been steadily increasing to use a wireless keyboard via Radio Frequency which is the input device. Especially, wireless keyboards that use 2.4 GHz frequency band are the most common items and their vulnerabilities have been reported since 2010. In this paper, we propose a 2.4 GHz wireless keyboard keystroke analysis and injection system based on the existing vulnerability researches of the Microsoft 2.4 GHz wireless keyboards. This system is possible to control on the remote. We also show that, via experiments using our proposed system, sensitive information of user can be revealed in the real world when using a 2.4 GHz wireless keyboard.

Implementation of 2.4 GHz Wireless Keyboard and Mouse Electromagnetic Signal Analysis and Manipulate Systems (2.4 GHz 무선 키보드/마우스 전자파 신호 분석 및 조작 시스템 구축)

  • Kim, Sang-Su;Oh, Seung-Sub;Na, In-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1075-1083
    • /
    • 2016
  • Nowadays, the use of wireless input devices has been increasing on the basis of high convenience and portability. In particular the most widely used wireless keyboard and the mouse to use the 2.4 GHz frequency band, but due to the third party receives the electromagnetic wave from leaking when the radio equipment it is easy to obtain the personal information and the vulnerability is also being reported consistently. In this paper, implement a system to analyze and manipulate the packets of 2.4 GHz wireless keyboard and mouse using USRP device and GNU Radio package for verify the vulnerability of 2.4 GHz wireless keyboard and mouse. Using the construction system has attained a equipment specific address and key information by analyzing the communication protocol and the packet structure of the device was proved that a user can operate the PC to send the random key from long distance.

A Study on Development of Attack System on the 2.4 GHz AES Wireless Keyboard (2.4 GHz AES 무선 키보드 공격 시스템 구축에 관한 연구)

  • Lee, Ji-Woo;Sim, Bo-Yeon;Park, Aesun;Han, Dong-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.233-240
    • /
    • 2017
  • Due to a recent rise in use of a wireless keyboard and mouse, attacks which take user's input information or control user's computer remotely exploiting the physical vulnerability in the wireless communication have been reported. Especially, MouseJack, announced by Bastille Network, attacks 2.4 GHz wireless keyboards and mice through exploiting vulnerability of each manufacturer's receiver. Unlike other attacks that have been revealed, this allows to attack AES wireless keyboards. Nonetheless, there is only a brief overview of the attack but no detailed information on this attacking method. Therefore, in this paper we will analyze the Microsoft 2.4 GHz wireless mouse packet and propose a way to set the packet configuration for HID packet injection simulating a wireless mouse. We also develop a system with 2.4 GHz AES wireless keyboard HID packet injection using the proposed packet and demonstrate via experiment that HID packet injection is possible through the system we built.

The Mouse & Keyboard Control Application based on Smart Phone (스마트 폰 기반의 마우스와 키보드 제어 어플리케이션)

  • Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.396-403
    • /
    • 2017
  • In recent years, the use of touch screens has expanded, and devices such as remote controllers have been developed in various ways to control and access contents at long range. The wireless-based touch screen is used in classroom, seminar room, and remote video conversation in addition to the TV remote control. The purpose of the study is to design a smart phone-based intuitive interface that can perform the role of a wireless mouse and a wireless keyboard at range using Bluetooth and to develop an application that integrates functions of a mouse and a keyboard. Firstly, touch interaction model for controlling software such as PowerPoint by connecting to a general PC on a smart phone has been studied. The most simple touch operation interface is used to reproduce the function of existing devices and design more simply. The studies of the extension of interfaces with various functions are important, but development of optimized interfaces for users will become more important in the future. In this sense, this study is valuable.

Analysis of 27MHz Wireless Keyboard Electromagnetic Signal Using USRP and GNU Radio (USRP와 GNU Radio를 이용한 27MHz 무선 키보드 전자파 신호 분석)

  • Kim, Ho-Yeon;Sim, Bo-Yeon;Park, Ae-Sun;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.81-91
    • /
    • 2016
  • Nowadays, electronic device is in a close relationship with human life. Above all, the use of wireless electronic devices such as smart phone, tablet pc, and wireless keyboard is increasing owing to the high convenience and portability. Furthermore, according to the increasing use of sensitive personal and financial information from the electronic device, various attacks for stealing information are being reported. In this paper we do an analysis of 27MHz wireless keyboard vulnerability and set up an analysis environment. Moreover, we make an experiment and show that there are real vulnerabilities. An experimental result will be used for safety analysis and vulnerability verification of wireless electronic devices.

Interactive Interface Design Through VR Hand Tracking (VR 핸드트레킹을 통한 상호작용 인터페이스 설계)

  • Ju-Sang Lee;Hyo-Seung Lee;Woo-Jun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.213-218
    • /
    • 2023
  • In order to use the VR HMD, operation through separate controllers in both hands is required. Methods for text input in VR include a method of selecting virtual keyboard keys on the screen one by one using a controller, a method of inputting through a keyboard that is a resource of a computer by connecting a computer and VR, or a method of inputting through a keyboard that is a resource of a computer by purchasing a wireless keyboard in VR and wireless keyboard connection method. As such, the text input method in current VR equipment causes inconvenience and additional costs to users. For these reasons, most of the VR-related contents are limited to simple functions such as games or viewers, and there is a risk that VR equipment will be recognized as a simple game machine. Therefore, in this study, a multi-input interface using hand tracking provided by the Oculus Quest2 device is designed and partially implemented. Through this, it is expected that various tasks such as document work and business processing as well as games can be conveniently used using VR equipment.

Tangible Interaction : Application for A New Interface Method for Mobile Device -Focused on development of virtual keyboard using camera input - (체감형 인터랙션 : 모바일 기기의 새로운 인터페이스 방법으로서의 활용 -카메라 인식에 의한 가상 키보드입력 방식의 개발을 중심으로 -)

  • 변재형;김명석
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • Mobile devices such as mobile phones or PDAs are considered as main interlace tools in ubiquitous computing environment. For searching information in mobile device, it should be possible for user to input some text as well as to control cursor for navigation. So, we should find efficient interlace method for text input in limited dimension of mobile devices. This study intends to suggest a new approach to mobile interaction using camera based virtual keyboard for text input in mobile devices. We developed a camera based virtual keyboard prototype using a PC camera and a small size LCD display. User can move the prototype in the air to control the cursor over keyboard layout in screen and input text by pressing a button. The new interaction method in this study is evaluated as competitive compared to mobile phone keypad in left input efficiency. And the new method can be operated by one hand and make it possible to design smaller device by eliminating keyboard part. The new interaction method can be applied to text input method for mobile devices requiring especially small dimension. And this method can be modified to selection and navigation method for wireless internet contents on small screen devices.

  • PDF

A method for text entry on a touch-screen keyboard based on the fuzzy touch scheme (퍼지터치를 이용한 터치스크린에서의 문자 입력 방법에 대한 연구)

  • Kwon, Sung-Hyuk;Lee, Dong-Hun;Chung, Min-K.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.262-268
    • /
    • 2008
  • Recently, as the demand for multimedia services based on the wireless technologies and mobile devices increases, Full-touch screen mobile devices adopting touch screen keyboards are emerging to cope with the limited display size and take advantage of the flexibility in the design of user interfaces. However, the text entry task, which is one of the main features of the mobile devices, decreases the competitive advantages of the touch screen keyboards over the physical keyboards or keypads due to the lack of physical feedbacks and the frequent occurrence of mistyping. This study aims to introduce a novel text entry method named Fuzzy Touch and compare this method with the conventional text entry method on a touch screen keyboard in terms of the performance (time, number of touch) and the subjective ratings (ease of use, overall preference).

  • PDF

Remote Care Using Medical Bed System Equipped With Body Pressure Sensors (체압 센서를 이용한 의료용 침대의 원격 케어)

  • Jaehyeok Jeung;Sanghyun Bok;Junhee Lim;Bokyung Oh;Youngdae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.619-625
    • /
    • 2023
  • In this paper, the remote care of medical beds with multiple body pressure sensors is described. Falling is one of the factors that seriously threaten the safety of patients and harm their health. In this study, a new bed was developed to overcome this. The bed system consists of a keyboard that can operate, a keyboard controller that manages the movement of the keyboard, a sensor that measures body pressure, a sensor controller that transmits and receives sensor values, a main controller that checks it and operates automatically or manually according to the algorithm, and a server that oversees all these information. The bed system checks the patient's location through a sensor and wirelessly alerts the server through the main controller when the patient determines that there is a risk of falling, so that the nurse or nurse can recognize the patient's dangerous condition. The server may receive state data transmitted from the wired/wireless terminal to monitor whether the bed system is operating normally. The controller of the keyboard operates a keyboard-type mechanism and automatically controls the prevention of bedsores connected by body pressure sensors to physically separate the area to which the patient's pressure is applied to prevent bedsores. The main controller checks the presence of the patient's bed and transmits it to the server. In conclusion, the proposed system can smart monitor the user's state and perform remote care.