• Title/Summary/Keyword: Wireless Energy Transfer

Search Result 185, Processing Time 0.028 seconds

An Efficient Cluster Management Scheme Using Wireless Power Transfer for Mobile Sink Based Solar-Powered Wireless Sensor Networks

  • Son, Youngjae;Kang, Minjae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • In this paper, we propose a scheme that minimizes the energy imbalance problem of solar-powered wireless sensor network (SP-WSN) using both a mobile sink capable of wireless power transfer and an efficient clustering scheme (including cluster head election). The proposed scheme charges the cluster head using wireless power transfer from a mobile sink and mitigates the energy hotspot of the nodes nearby the head. SP-WSNs can continuously harvest energy, alleviating the energy constraints of battery-based WSN. However, if a fixed sink is used, the energy imbalance problem, which is energy consumption rate of nodes located near the sink is relatively increased, cannot be solved. Thus, recent research approaches the energy imbalance problem by using a mobile sink in SP-WSN. Meanwhile, with the development of wireless power transmission technology, a mobile sink may play a role of energy charging through wireless power transmission as well as data gathering in a WSN. Simulation results demonstrate that increase the amount of collected data by the sink using the proposed scheme.

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

Data Collection Management for Wireless Sensor Networks Using Drones with Wireless Power Transfer

  • Ikjune Yoon;Dong Kun Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.121-128
    • /
    • 2023
  • To increase the lifetime of the network in wireless sensor networks, energy harvesting from the surrounding environment or wireless power transfer is being used. In addition, to reduce the energy imbalance and increase the amount of data gathered, a method using mobile sink nodes that visit sensor nodes to gather data has been used. In this paper, we propose a technique to reduce the load on the relay node and collect a lot of data evenly in this environment. In the proposed scheme, sensor nodes construct Minimum Depth Trees (MDTs) considering the network environment and energy, and allocate the data collection amount. Simulation results show that the proposed technique effectively suppresses energy depletion and collects more data compared to existing techniques.

Analysis on Spectrum Utilization Strategies in Cognitive Radio Network Based on Multi-Antenna Wireless Energy Transfer (다중안테나 무선 전력 전송에 기반한 인지 무선 네트워크에서의 스펙트럼 활용방안 분석)

  • Lee, Sung-bok;Park, Jaehyun;Kang, Kyu-Min;Park, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • This paper presents spectrum utilization strategies in cognitive radio (CR) networks powered by multi-antenna based wireless energy transfer. Secondary access point (AP) with multiple antennas should transfer the energy to the secondary sensor nodes with energy beamforming and simultaneously induces no interference to PUs. In addition, sensor nodes can transmit information to the secondary AP using the harvested energy, only when the spectrum is not utilized by PUs. We analyze the achievable rate of the CR sensor networks and propose an interference nulling energy beamforming method to maximize the achievable rate. Finally, we also propose a frame scheduling algorithm in which the durations of wireless energy transfer/information transfer frames (phases) are optimized.

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

MHP: Master-Handoff Protocol for Fast and Energy-Efficient Data Transfer over SPI in Wireless Sensing Systems

  • Yoo, Seung-Mok;Chou, Pai H.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.553-563
    • /
    • 2012
  • Serial peripheral interface (SPI) has been identified as a bottleneck in many wireless sensing systems today. SPI is used almost universally as the physical connection between the microcontroller unit (MCU) and radios, storage devices, and many types of sensors. Virtually all wireless sensor nodes today perform up to twice as many bus transactions as necessary to transfer a given piece of data, as an MCU must serve as the bus master in all transactions. To eliminate this bottleneck, we propose the master-handoff protocol. After the MCU initiates reading from the source slave device and writing to the sink slave device, the MCU as a master becomes a slave, and either the source or the sink slave becomes the temporary master. Experiment results show that this master-handoff technique not only cuts the data transfer time in half, but, more importantly, also enables a superlinear energy reduction.

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Wireless Energy Transfer System with Multiple Coils via Coupled Magnetic Resonances

  • Cheon, Sanghoon;Kim, Yong-Hae;Kang, Seung-Youl;Lee, Myung Lae;Zyung, Taehyoung
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.527-535
    • /
    • 2012
  • A general equivalent circuit model is developed for a wireless energy transfer system composed of multiple coils via coupled magnetic resonances. To verify the developed model, four types of wireless energy transfer systems are fabricated, measured, and compared with simulation results. To model a system composed of n-coils, node equations are built in the form of an n-by-n matrix, and the equivalent circuit model is established using an electric design automation tool. Using the model, we can simulate systems with multiple coils, power sources, and loads. Moreover, coupling constants are extracted as a function of the distance between two coils, and we can predict the characteristics of a system having coils at an arbitrary location. We fabricate four types of systems with relay coils, two operating frequencies, two power sources, and the function of characteristic impedance conversion. We measure the characteristics of all systems and compare them with the simulation results. The flexibility of the developed model enables us to design and optimize a complicated system consisting of many coils.

Capacitive Coupling LLC Wireless Power Transfer Converter Through Glasses of Electric Vehicles (전기자동차의 유리를 통한 커패시티브 커플링 LLC 무선 전력 전송 컨버터)

  • You, Young-Soo;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.542-545
    • /
    • 2016
  • This work proposes a capacitive coupling-based wireless battery charging circuit that is built with vehicle glasses for electric vehicles. A capacitive coupling wireless power transfer offers many advantages, such as low metal impact and low energy transfer efficiency changes in accordance with changes in position. However, a large coupling capacitor is needed for high power transfer. Therefore, a new capacitive coupling-based wireless power transfer LLC resonant converter built with the glasses of an electric vehicle is proposed. The proposed converter is composed of coupling capacitors with glasses of an electric vehicle and two transformers for impedance transformation. The proposed LLC converter can transfer large power and obtain high efficiency with zero voltage switching. The validity and features of the proposed circuit is verified by experimental results with a 1.2 kW prototype.