• Title/Summary/Keyword: Wireless Energy

Search Result 2,204, Processing Time 0.026 seconds

An Energy-Efficient MAC Protocol for Wireless Wearable Computer Systems

  • Beh, Jounghoon;Hur, Kyeong;Kim, Wooil;Joo, Yang-Ick
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Wearable computer systems use the wireless universal serial bus (WUSB), which refers to USB technology that is merged with WiMedia physical layer and medium access control layer (PHY/MAC) technical specifications. WUSB can be applied to wireless personal area network (WPAN) applications as well as wired USB applications such as PAN. WUSB specifications have defined high-speed connections between a WUSB host and WUSB devices for compatibility with USB 2.0 specifications. In this paper, we focus on an integrated system with a WUSB over an IEEE 802.15.6 wireless body area network (WBAN) for wireless wearable computer systems. Due to the portable and wearable nature of wearable computer systems, the WUSB over IEEE 802.15.6 hierarchical medium access control (MAC) protocol has to support power saving operations and integrate WUSB transactions with WBAN traffic efficiently. In this paper, we propose a low-power hibernation technique (LHT) for WUSB over IEEE 802.15.6 hierarchical MAC to improve its energy efficiency. Simulation results show that the LHT also integrates WUSB transactions and WBAN traffic efficiently while it achieves high energy efficiency.

A Survey on Transport Protocols for Wireless Multimedia Sensor Networks

  • Costa, Daniel G.;Guedes, Luiz Affonso
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.241-269
    • /
    • 2012
  • Wireless networks composed of multimedia-enabled resource-constrained sensor nodes have enriched a large set of monitoring sensing applications. In such communication scenario, however, new challenges in data transmission and energy-efficiency have arisen due to the stringent requirements of those sensor networks. Generally, congested nodes may deplete the energy of the active congested paths toward the sink and incur in undesired communication delay and packet dropping, while bit errors during transmission may negatively impact the end-to-end quality of the received data. Many approaches have been proposed to face congestion and provide reliable communications in wireless sensor networks, usually employing some transport protocol that address one or both of these issues. Nevertheless, due to the unique characteristics of multimedia-based wireless sensor networks, notably minimum bandwidth demand, bounded delay and reduced energy consumption requirement, communication protocols from traditional scalar wireless sensor networks are not suitable for multimedia sensor networks. In the last decade, such requirements have fostered research in adapting existing protocols or proposing new protocols from scratch. We survey the state of the art of transport protocols for wireless multimedia sensor networks, addressing the recent developments and proposed strategies for congestion control and loss recovery. Future research directions are also discussed, outlining the remaining challenges and promising investigation areas.

A Large-scale Multi-track Mobile Data Collection Mechanism for Wireless Sensor Networks

  • Zheng, Guoqiang;Fu, Lei;Li, Jishun;Li, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.857-872
    • /
    • 2014
  • Recent researches reveal that great benefit can be achieved for data gathering in wireless sensor networks (WSNs) by employing mobile data collectors. In order to balance the energy consumption at sensor nodes and prolong the network lifetime, a multi-track large-scale mobile data collection mechanism (MTDCM) is proposed in this paper. MTDCM is composed of two phases: the Energy-balance Phase and the Data Collection Phase. In this mechanism, the energy-balance trajectories, the sleep-wakeup strategy and the data collection algorithm are determined. Theoretical analysis and performance simulations indicate that MTDCM is an energy efficient mechanism. It has prominent features on balancing the energy consumption and prolonging the network lifetime.

Energy Efficient Control Scheme in Wireless Sensor Networks

  • Pongot, Kamil;Jeong, Woo-Jin;Lee, Jae-Yoon;Yoon, Dong-Weon;Park, Sang-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.371-372
    • /
    • 2008
  • In this paper, we consider wireless sensor networks with hard energy constraint, where each node is powered by a small battery. Under this hard constraint, reducing energy consumption is the most important design consideration for wireless sensor networks. Energy saving and control is an important issue, involved in the design of most sensor nodes. In this context, we focus on physical layer design where energy constraint problem can be modeled as an optimization of transmission modulation scheme[1]. Specifically, our analyses are based on energy control schemes that are relative to physical layer design on upper bound SEP MPSK in AWGN channels.

  • PDF

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Energy-balance node-selection algorithm for heterogeneous wireless sensor networks

  • Khan, Imran;Singh, Dhananjay
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.604-612
    • /
    • 2018
  • To solve the problem of unbalanced loads and the short network lifetime of heterogeneous wireless sensor networks, this paper proposes a node-selection algorithm based on energy balance and dynamic adjustment. The spacing and energy of the nodes are calculated according to the proximity to the network nodes and the characteristics of the link structure. The direction factor and the energy-adjustment factor are introduced to optimize the node-selection probability in order to realize the dynamic selection of network nodes. On this basis, the target path is selected by the relevance of the nodes, and nodes with insufficient energy values are excluded in real time by the establishment of the node-selection mechanism, which guarantees the normal operation of the network and a balanced energy consumption. Simulation results show that this algorithm can effectively extend the network lifetime, and it has better stability, higher accuracy, and an enhanced data-receiving rate in sufficient time.

Privacy-Preserving, Energy-Saving Data Aggregation Scheme in Wireless Sensor Networks

  • Zhou, Liming;Shan, Yingzi
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • Because sensor nodes have limited resources in wireless sensor networks, data aggregation can efficiently reduce communication overhead and extend the network lifetime. Although many existing methods are particularly useful for data aggregation applications, they incur unbalanced communication cost and waste lots of sensors' energy. In this paper, we propose a privacy-preserving, energy-saving data aggregation scheme (EBPP). Our method can efficiently reduce the communication cost and provide privacy preservation to protect useful information. Meanwhile, the balanced energy of the nodes can extend the network lifetime in our scheme. Through many simulation experiments, we use several performance criteria to evaluate the method. According to the simulation and analysis results, this method can more effectively balance energy dissipation and provide privacy preservation compared to the existing schemes.

Wireless Energy-Harvesting Cognitive Radio with Feature Detectors

  • Gao, Yan;Chen, Yunfei;Xie, Zhibin;Hu, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4625-4641
    • /
    • 2016
  • The performances of two commonly used feature detectors for wireless energy-harvesting cognitive radio systems are compared with the energy detector under energy causality and collision constraints. The optimal sensing duration is obtained by analyzing the effect of the detection threshold on the average throughput and collision probability. Numerical examples show that the covariance detector has the optimal sensing duration depending on an appropriate choice of the detection threshold, but no optimal sensing duration exists for the ratio of average energy to minimum eigenvalue detector.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

A Study on the Energy Scavenging System Using Piezoelectric Effect (압전 효과를 이용한 에너지 포집 시스템에 관한 연구)

  • Chio, Bum-Kyoo;Lee, Je-Yun;Lee, Woo-Hun;Oh, Jae-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Mostly used sensors have wired powering and two-way cable systems. It is difficult to employ wired sensor network in ubiquitous era because of a number of sensors and cables. Therefore, sensor networks move from wired systems to wireless systems for the future. However, the power source is a critical obstacle for wireless sensornodes. This research represents the new power source which supplies energy sensor node, maintains over 10 years, and thus replaces batteries with limit of lifetime. The system with piezo materials scavenges extra energies such as vibration and acceleration from the environment. Then it converts the scavenged mechanical energy to electrical energy for powering a sensor, a controller and a circuit for regulating voltage and transmitting sensor value. This study explains the properties of piezo material through theoretical analysis and experiments, and demonstrates powering sensor and transmitting data with stored energy (35mJ) for 14 sec. The developed system provides a solution to overcome the critical problem of making up wireless sensor networks.