• 제목/요약/키워드: Wireless EMG

검색결과 58건 처리시간 0.031초

Wireless EMG-based Human-Computer Interface for Persons with Disability

  • Lee, Myoung-Joon;Moon, In-Hyuk;Kim, Sin-Ki;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1485-1488
    • /
    • 2003
  • This paper proposes a wireless EMG-based human-computer interface (HCI) for persons with disabilities. For the HCI, four interaction commands are defined by combining three elevation motions of shoulders such as left, right and both elevations. The motions are recognized by comparing EMG signals on the Levator scapulae muscles with double thresholds. A real-time EMG processing hardware is implemented for acquiring EMG signals and recognizing the motions. To achieve real-time processing, filters such as high- and low-pass filter and band-pass and -rejection filter, and a full rectifier and a mean absolute value circuit are embedded on a board with a high speed microprocessor. The recognized results are transferred to a wireless client system such as a mobile robot via a Bluetooth module. From experimental results using the implemented real-time EMG processing hardware, the proposed wireless EMG-based HCI is feasible for the disabled.

  • PDF

근전도기반의 무선 착용형 컴퓨터 인터페이스 개발 (Development of an EMG-based Wireless and Wearable Computer Interlace)

  • 한효녕;최창목;이연주;하성도;김정
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.240-244
    • /
    • 2008
  • 본 논문에서는 근전도 신호 기반의 무선 착용형 컴퓨터 인터페이스를 개발하였다. 밴드 형태의 무선 착용형 단말기는 4 채널 근전도 센서와 붙어있으며, 대역통과 필터 및 차단 필터, 신호증폭기를 이용하여 구별 가능한 근전도 신호를 추출하였다. 얻어진 신호는 무선통신을 통해 컴퓨터로 전송하게 된다. 컴퓨터 인터페이스를 위해 손목 움직임을 사용하였으며, 움직임으로부터 획득된 신호를 다층 인식 신경망을 사용하여 손목 움직임을 인식하게 하였다. 이를 통하여 마우스 커서의 움직임을 제어하고, 마우스 버튼을 클릭하는 동작을 할 수 있으며, 시각 디스플레이 장치에 표시된 핸드폰 자판과 같은 유저 인터페이스를 통해 컴퓨터에 글자를 입력할 수 있게 하였다.

  • PDF

E-textile을 이용한 무선 sEMG 모니터링 컴프레션 바지 설계 (Design of Compression Pants for Wireless sEMG Monitoring using e-textile)

  • 진희재;이효정
    • 한국의류학회지
    • /
    • 제48권1호
    • /
    • pp.94-107
    • /
    • 2024
  • This study developed compression pants with excellent wearability and signal quality by approaching the design of wireless sEMG monitoring pants from the perspective of technical design, including the evaluation of wearability and the stable wireless transmission of signals through electrode and circuit design, and using e-textiles. An electrode, sewn with silver thread and a circuit stitched in a zigzag pattern using stainless steel wire, were applied. Additionally, polyurethane sealing tape was used to enhance adherence to the skin and reduce electrical resistance. Conductive snaps completed the design, allowing attachment and detachment to the bio-signal acquisition mainboard. Through the subjects' evaluation, it was determined that the final pants were applied with a pattern reduction rate of 25% to provide superior comfort according to different body parts while also minimizing skin irritation around the thigh circuit. The final pants for wireless sEMG monitoring, which demonstrated stable transmission of wireless measurements, was positively evaluated in terms of cognitive acceptability. This study is significant in that it achieved an optimal design by considering both technical aspects and the electrical characteristics of bio-signal monitoring garments, as well as the wearer's perception when designing smart wear.

회전점프-착지 시 회전방향이 안정성에 미치는 영향 (Effects on Stability of Rotational Direction after Rotational Jump-Landings)

  • Park, Jun Sung;Woo, Byung Hoon
    • 한국운동역학회지
    • /
    • 제32권3호
    • /
    • pp.80-86
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of three rotational jump conditions (standing jump, left rotational jump and right rotational jump) on stability through center of pressure (COP) and EMG variables analysis. Method: A total of 16 college students (age: 24.13 ± 7.17 years, height: 169.24 ± 8.23 cm, weight: 65.65 ± 13.88 kg) participated in this study. The study used wireless two COP plates and wireless eight channel EMG. The analyized variables were 11 variables for COP and RMS for EMG, which were analyzed using one-way analysis of variance with repeated measures according to three rotational jump conditions. Results: Among the COP variables, left rotational jump (LRJ) and right rotational jump (RRJ) were larger than standing jump (SJ) for left and right amplitude, area, total displacement, and average velocity for both feet among the variables of COP, and for area of the left foot, RRJ was larger than that of SJ. Among the EMG variables, there was no statistical difference between the muscle activations, but the muscle activity was significantly higher in the order of RRJ, LRJ, and SJ according to direction of rotation. Conclusion: Although the results of COP and EMG were not consistent through this study, it can be expected that the differences in COP was due to the amount of rotation during rotational jump-landing in the left and right directions, and that the EMG is determined by the lateral movements required for rotation.

블루투스-LE 기반 심전도/근전도/맥박 무선 모니터링 회로 및 시스템 구현 (Implementation of a Bluetooth-LE Based Wireless ECG/EMG/PPG Monitoring Circuit and System)

  • 이욱준;박형열;신현철
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.261-268
    • /
    • 2014
  • 본 논문에서는 저전력 블루투스인 블루투스-LE를 기반으로 하여 심전도, 근전도, 맥박 신호의 무선 모니터링 시스템을 설계 및 구현하였다. 심전도와 근전도 신호를 얻기 위한 센서 인터페이스 아날로그 회로부는 상용칩을 이용하여 설계 및 제작하였다. 저전력 블루투스 통신 모듈로는 Texas Instruments에서 제공하는 CC2540DK를 이용하였다. 2개의 CC2540DK를 사용하여 각각 Peripheral과 Central 노드 역할을 하도록 했다. Peripheral은 획득한 아날로그 생체신호를 ADC를 이용해 디지털 신호로 변환한 후 무선으로 Central로 전송하는 역할을 한다. Central은 Peripheral로부터 데이터를 수신한 후 UART 통신을 통해 PC로 전송한다. 전송된 생체신호는 그래픽 사용자 인터페이스를 통해 파형 또는 결과값의 형태로 표시된다. 이와 같은 시스템은 블루투스 4.0기반 무선 생체신호 모니터링 헬스케어 시스템에 적극 활용될 수 있을 것이다.

저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구 (Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring)

  • 이욱준;신현철
    • 전자공학회논문지
    • /
    • 제52권3호
    • /
    • pp.89-95
    • /
    • 2015
  • 무선 헬스케어 서비스에서 생체신호 모니터링 시스템의 전력소모를 효과적으로 감소시킬 수 있는 압축센싱 기법을 다양한 생체신호에 적용하여 압축률을 비교하였다. 압축센싱 기법을 이용하여 일반적인 심전도, 근전도, 뇌전도 신호의 압축과 복원을 수행하였고, 이를 통해 복원된 신호와 원신호를 비교함으로써, 압축센싱의 유효성을 판단하였다. 유사랜덤 행렬을 사용하여 실제 생체신호를 압축하였으며, 압축된 신호는 Block Sparse Bayesian Learning(BSBL) 알고리즘을 사용하여 복원하였다. 가장 산제된 특성을 가지는 근전도 신호의 최대 압축률이 10배로 확인되어 가장 높았으며, 심전도 신호의 최대 압축률은 5배였다. 가장 산제된 특성이 작은 뇌전도 신호의 최대 압축률은 4배였다. 연구된 심전도, 근전도, 뇌전도 신호의 압축률은 향후 압축센싱을 적용한 무선 생체신호 모니터링 회로 및 시스템 개발시 유용한 기초자료로 활용될 수 있다.

Development of EMG-Triggered Functional Electrical Stimulation Device for Upper Extremity Bilateral Movement Training in Stroke Patients: Feasibility and Pilot study

  • Song, Changho;Seo, Dong-kwon
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권3호
    • /
    • pp.374-378
    • /
    • 2021
  • Objective: Bilateral movement training is an effective method for upper extremity rehabilitation of stroke. An approach to induce bilateral movement through functional electrical stimulation is attempted. The purpose of this study is to develop an EMG-triggered functional electrical stimulation device for upper extremity bilateral movement training in stroke patients and test its feasibility. Design: Feasibility and Pilot study design. Methods: We assessed muscle activation and kinematic data of the affected and unaffected upper extremities of a stroke patient during wrist flexion and extension with and without the device. Wireless EMG was used to evaluate muscle activity, and 12 3D infrared cameras were used to evaluate kinematic data. Results: We developed an EMG-triggered functional electrical stimulation device to enable bilateral arm training in stroke patients. A system for controlling functional electrical stimulation with signals received through a 2-channel EMG sensor was developed. The device consists of an EMG sensing unit, a functional electrical stimulation unit, and a control unit. There was asymmetry of movement between the two sides during wrist flexion and extension. With the device, the asymmetry was lowest at 60% of the threshold of the unaffected side. Conclusions: In this study, we developed an EMG-triggered FES device, and the pilot study result showed that the device reduces asymmetry.

셀프 피트니스 의류 개발을 위한 근전도 센싱 위치 연구 (A Study of Sensing Locations for Self-fitness Clothing base on EMG Measurement)

  • 조하경;조상우
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.755-765
    • /
    • 2016
  • Recently, interest in monitoring health and sports is growing because of the emphasis on wellness, which is accelerating the development and commercialization of smart clothing for biosignal monitoring. In addition to exerciseeffect monitoring clothing that tracks heart rate and respiration, recently developed clothing makes it possible to monitor muscle balance using electromyogram (EMG). The electrode for EMG have to attached to an accurate location in order to obtain high-quality signals in surface EMG measurement. Therefore, this study develops monitoring clothing suitable for different types of human bodies and aims to extract suitable range of EMG according to movements in order to develop self-fitness monitoring clothing based on EMG measurement. This study identified and attached electrodes on six upper muscles and two lower muscles of ten males in their 20s. After selecting six main motions that create a load on muscles, the 8-ch wireless EMG system was used to measure amplitude value, noise, SNR and SNR (dB) in each part and statistical analysis was conducted using SPSS 20.0. As a result, the suitable range for EMG measurement to apply to clothing was identified as four parts in musculus pectoralis major; three parts in muscle rectus abdominis, two parts each in shoulder muscles, backbone erector, biceps brachii, triceps brachii, and musculus biceps femoris; and four part in quadriceps muscle of thigh. This was depicted diagrammatically on clothing, and the EMG-monitoring sensing locations were presented for development of self-fitness monitoring.