• Title/Summary/Keyword: Wireless Charging

Search Result 189, Processing Time 0.031 seconds

Improved Metal Object Detection Circuits for Wireless Charging System of Electric Vehicles

  • Sunhee Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2209-2221
    • /
    • 2023
  • As the supply of electric vehicles increases, research on wireless charging methods for convenience has been increasing. Because the electric vehicle wireless transmission device is installed on the ground and the electric vehicle battery is installed on the floor of the vehicle, the transmission and reception antennas are approximately 15-30 cm away, and thus strong magnetic fields are exposed during wireless charging. When a metallic foreign object is placed in the magnetic field area, an eddy current is induced to the metallic foreign object, and heat is generated, creating danger of fire and burns. Therefore, this study proposes a method to detect metallic foreign objects in the magnetic field area of a wireless electric vehicle charging system. An active detection-only coil array was used, and an LC resonance circuit was constructed for the frequency of the supply power signal. When a metallic foreign object is inserted into the charging zone, the characteristics of the resonance circuit are broken, and the magnitude and phase of the voltage signal at both ends of the capacitor are changed. It was confirmed that the proposed method has about 1.5 times more change than the method of comparing the voltage magnitude at one node.

A Charging Mechanism in the System Interworking between Wireless LANs and Cellular Networks (무선 LAN과 이동통신망을 연동하는 통합 시스템에서의 과금 방안)

  • 이완연;박찬영
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • In this paper, we investigate a charging mechanism for the system interworking between Wireless Local Area Networks(LANs) and Cellular Networks. Because the charging mechanisms of the two networks are different, a unified charging mechanism is required to correlate the charging informations of the two networks in the system interworking. Therefore, we propose a unified charging mechanism to collect charging information with a combined identifier. Also, we propose a decision method to control the interval of transferring accounting information according to the charging types of users (pre-paid, off-paid, and fixed-rate) and show that the proposed decision method improves the granularity and the communication efficiency of charging informations.

Charging Control of Wireless Charging System (무선충전시스템의 충전 제어 방식)

  • Shin, Han-Ho;Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.

Sector-based Charging Schedule in Rechargeable Wireless Sensor Networks

  • Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4301-4319
    • /
    • 2017
  • Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.

Comparative Analysis and Improvement of Transmitting Efficiency in RF Wireless Charging System (RF무선충전 시스템 전송효율 개선 및 비교 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, the measurements of received power was shown and compared in two developed 5.8GHz 25W wireless charging systems. One is the system using commercial transmission antenna, and the other is the system using transmission antenna combined with metamaterial. The system combined with metamaterial shows higher received power due to negative reflective index of metamaterial. In addition, a comparative analysis of the systems shows that the transmission efficiency in the systems can decrease the real gain of transmission antenna due to higher side robe of beam pattern. The side robe beams of transmitting antenna interferes transmitted beam with the reflected beams from the bottom region due to the side robes. The failure problems of the RF wireless charging systems are discussed and proposed in order to charge mobile devices through the RF wireless charging system.

Three-Dimensional Magnetic Resonant Coil System with Double Transmitter Coil for Enhancement of Wireless Charging Efficiency and Charging Flexibility (모바일 무선충전 효율 및 충전 자유도 개선을 위한 3차원 이중 송신 코일시스템)

  • Gwon, Gi-Jong;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.9-16
    • /
    • 2020
  • Wireless charging has been considered an essential part of recent mobile devices. Moreover, various wireless charging systems have emerged through many studies. Among the systems, in the 2D flat coil system, the transmitter coil and receiver coil are arranged horizontally as close as possible to improve the charging efficiency. Nowadays, the 3D coil system has been proposed by adding some slope to flat 2D coils to reduce the volume. On the other hand, the 3D coil system has a lower charging efficiency than the 2D system that decreases rapidly with increasing distance. This paper proposes a new system that improves the low efficiency and charging freedom, which are the drawbacks of the existing 3D systems. The proposed system was designed in three-dimensions, and another transmitter coil was added to the transmitter coil to improve the transmission efficiency and flexibility. The measurement showed that the charging efficiency of the proposed system was 40.10% when the distance between coils was 8 mm, which is 20.5 % improvement over the existing one. The proposed method can be applied when new wireless charging systems are designed and improve charging efficiency can be improved.

Wireless Power Transfer Technologies Trends (무선전력전송에 대한 기술 개발 동향)

  • Eom, T.Y.;Oh, C.S.;Park, S.J.
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-178
    • /
    • 2015
  • We have surveyed on technical method of wireless power transfer and have also surveyed on applications of the wireless charging for mobiles and of the wireless charging for electrical vehicle and electrical equipments. In this study, we have described about wireless power transfer and have analyzed and checked wireless power transfer prospects of applications and practical development.

A Technology Trend and Analysis of Electric Vehicle Wireless Charging System (전기 자동차 무선 충전 시스템 기술 동향 및 분석)

  • Lim, Jong-Gyun;Lee, Dong-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.255-260
    • /
    • 2021
  • The importance of electric vehicles is gradually increasing due to the recent depletion of fossil fuels. In order to use an electric vehicle, the battery built into the vehicle must be frequently charged. Electric vehicles has very good performance in terms of noise and vibration. However, due to the limitations of the battery, the mileage is considerably shorter than that of an internal combustion engine vehicle once it is charged, and the battery charging time is relatively long compared to the refueling time. There are two types of charging methods for electric vehicle batteries: plug-in and wireless charging. In this paper, we introduced the wireless charging technology for electric vehicles and the current state of technology development and standards in major countries.

Analysis of Wireless Power Transfer Characteristics for Multiple Receivers by Time Sharing Technique

  • Park, Jong-Min;Nam, Sang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.183-185
    • /
    • 2011
  • A multiple charging method for a wireless power transfer system (WPTS) in the near-field region is proposed. We analyzed the frequency characteristics of multiple receivers in the near-field region. The results suggested that the time division WPTS can achieve efficient and equal power transmission at multiple receivers. We conclude that this system has an advantage for charging multiple receivers.

Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging (전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계)

  • Lukman, Grace Firsta;Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.