• Title/Summary/Keyword: Wireless Charging

Search Result 189, Processing Time 0.031 seconds

Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

  • Chung, Y.D.;Yim, Seong Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

Design of Autonomous Independent Power System for USN Sensor Node Using Power CT (Power CT를 이용한 USN 센서노드용 자율독립전원 시스템 설계)

  • Son, Won-Kuk;Jeong, Jae-Kee
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.101-107
    • /
    • 2018
  • In wireless sensor network technology, which has been applied to various fields, the power supply and the power management of sensors are the most important issues. For this reason, a new concept of power supply and power management device is required. In this paper, we developed an autonomous independent power supply system that supplies the stable power to a sensor node without an additional external input by applying the energy harvesting technology using the electromagnetic induction principle by utilizing the current flowing in the transmission line. The proposed autonomous independent power supply system consists of a power supply using Power CT and a power management system including a charging circuit. The power management device uses a voltage limiter circuit and a monitoring circuit of charging voltage and current to ensure the safety of charging of the battery. In order to verify the performance of the proposed system, we applied it to the SVL diagnostic system and confirmed that it operates stably.

Study on the Design of High Efficient Class-E Power Amplifier and Resonant Coils for High Efficient Wireless Power Transfer System (고효율 무선 전력 전송을 위한 고효율 E급 전력 증폭기 및 공진 코일 설계에 관한 연구)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.935-940
    • /
    • 2016
  • Recently, wireless power transmission system is gradually extended to technology in various fields such as lighting field, electric vehicles and smartphones wireless charging system. The largest of the two elements for high transmission efficiency of the wireless power transmission system are resonant coils and power amplifiers. In this paper, in order to build a high efficient wireless power transmission system, we introduce the resonance coil manufacturing method and high efficiency power amplifier design method that operates at 6.78MHz.

A Service Framework and Communication Method for Exchanging Information between Electric Vehicles and EV Charging Infrastructure (전기자동차와 충전인프라 간의 정보교환을 위한 서비스 프레임워크 및 통신 방법에 관한 연구)

  • Ryu, Min-Woo;Yoon, Jae-Seok;Lee, Sang-Sean;Won, Kwang-Ho;Cho, Kuk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2823-2829
    • /
    • 2011
  • All of the government, private enterprises, and local governments are promoting the spread of electric vehicles to reduce carbon emissions depending on the green growth policy of the government that began in 2009. Due to this background, the prevalence of electric cars is being spread. However, the efficient management and operation through the exchanging information between electric vehicles and charging infrastructure, as well as the development of electric vehicles are essential to disseminate them. In this paper, we present a service framework for exchange of information between electric vehicles and charging infrastructure, and propose a communication method to meet it. To do this, we propose the most appropriate communication method through the performance evaluation by identifying and comparing the existing wireless communication methods can be applied to exchange information between electronic vehicles and EV charging infrastructure.

Development of a Smart Grid Monitoring System with Anti-Islanding Function for Electric Vehicle Charging (안티아일랜딩 기능을 적용한 전기자동차 충전계통 연계 스마트그리드 모니터링 시스템 개발)

  • Ro, Sunny;Shin, Bum-Sik;Lee, Kyung-Jung;Ki, Young-Hun;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • In this paper, we present a smart grid monitoring system connected with electric vehicle charging system using anti-islanding method. Electric vehicles can be charged through remote control of smart grid monitoring system and the charging process may be more stable and more efficient by wireless communication between the Local Area Module and End Modules. It is illustrated by some experiments that electric vehicle charging process may not be interrupted without any serious fault even though the islanding phenomena occurred in the grid if the presented monitoring system was applied to the smart grid system.

Dosimetry for Resonance-Based Wireless Power Transfer Charging of Electric Vehicles

  • Park, Sang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.129-133
    • /
    • 2015
  • This paper presents the dosimetry of a resonance-based wireless power transfer (RBWPT) system for electric vehicles applications. The compact RBWPT system is designed to transfer power at 150-mm distance. The electric and magnetic fields generated by the RBWPT system and the specific absorption rate in the human body model, which stands around the system, are calculated. These analyses are conducted in two cases: the alignment and the misalignment between the transmitter and the receiver. The matching loops are adjusted to maximize the power transfer efficiency of the RBWPT system for the misalignment condition. When the two cases were compared for the best power transfer efficiency, the specific absorption rates (SAR) in the misalignment case were larger than those in the alignment case. The dosimetric results are discussed in relation to the international safety guidelines.

Wireless Power Transfer Technology in On-Line Electric Vehicle

  • Ahn, Seung-Young;Chun, Yang-Bae;Cho, Dong-Ho;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The On-line Electric Vehicle (OLEV) is an electric transport system in which the vehicle's power is transferred wirelessly from power lines underneath the surface of the road. Advantages of the OLEV include reducing battery size and cost to about 20 percent of that of conventional battery-powered electric vehicles, thereby minimizing the vehicle's weight and price, as well as the cost of charging the system. In this paper, we introduce a wireless power transfer mechanism to maximize the electrical performance of the power transfer system. Power transfer capacity, power transfer efficiency, and magnitude of leakage in the electromagnetic field (EMF) are analyzed, and the optimization methodology of the design parameters is discussed.

Method of Usage-based Charging Record for Mobile IP service in PDSN (무선인터넷 접속 장치에서 사용량기반의 Mobile IP 서비스 과금 수록 방법)

  • Kim, Soon-Choul;Lee, Hoon-Ki;Ryu, Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1511-1514
    • /
    • 2002
  • 본 논문에서는 IS-95C 패킷 데이터 서비스 노드(PDSN ; Packet Data Service Node) 역할을 수행하는 MiDAS(개발장비명, Mobile Interface Data Access System) 시스템에 대해서 간략히 설명하고. 이 시스템에 탑재되는 여러 서브 기능들 중에 과금 기능에 대한 전체 구조와 타 기능들과의 인터페이스, 과금 세션(Accounting Session) 및 각 과금세션에 따른 과금 요소(Accounting Parameter)들을 설명한다. 특히, 무선 단말의 증가와 함께 무선인터넷 사용자에게 고수준의 서비스를 제공하고자 하는 목적으로 네트워크 장비에 이동성 IP(Mobile IP) 적용에 대한 중요성은 날로 부각되고 있다. 따라서. 단순 IP(Simple IP)와 달리 이동성에 따른 적절한 과금 특성 요소를 추출하고, 핸드오프(Handoff)나 대기상태(Dormant) 등의 서비스 변화 시 과금 수록 방안에 대해서 기술한다.

  • PDF

Low Power RF Energy Harvesting from the UHF RFID System (UHF RFID 시스템으로부터의 저전력 RF 에너지 하베스팅)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.182-187
    • /
    • 2009
  • In this paper, the power management module of wireless sensor node is designed and fabricated utilizing RF energy from reader antenna of commercial RFID system, which is mainly categorized in the energy harvesting. For this, the rectenna and the high efficient boost converter is designed to get the DC power from RF power for the charging the battery. When the RF power from RFID reader antenna is 1.2[W], the DC power of 3.1[mW] at the distance of 1[m] and 1[mW] at 5.5[m] are obtained. Considering the connection to the battery, the boost converter for enhancing the conversion efficiency is designed. The conversion efficiency at the distance of 4[m] is 79.3[%] and the harvested power is 1.36[mW] which is actually used for the charging the battery. This value is available in the wireless sensor networking.

High Efficiency Magnetic Resonance Wireless Power Transfer System and Battery Charging Chip (자기 공진 방식의 고효율 무선 전력 전송 시스템 및 배터리 충전 칩)

  • Youn, Jin Hwan;Park, Seong Yeol;Choi, Jun Rim
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.43-49
    • /
    • 2015
  • In this paper, we propose enhanced wireless power transfer system based on magnetic resonance for portable electronic device charging. Resonators were designed and fabricated for efficiency improvement and miniaturization through electromagnetism simulation using HFSS(High Frequency Structure Simulator). Impedance matching network is employed to minimize reflections that is caused by difference between input impedance and output impedance. Receiver IC that consist of rectifier and Low Drop Out(LDO) regulator were designed and fabricated to reduce power loss. This chip is implemented in $0.35{\mu}m$ BCD technology. A maximum overall efficiency of 73.8% is determined for the system through experimental verification.