• Title/Summary/Keyword: Wireless A/V System

Search Result 183, Processing Time 0.026 seconds

Research of Wireless A/V System Implementations based on Binary CDMA Technology (Binary CDMA 기반 무선 A/V 감시시스템 구현에 관한 연구)

  • Lee, Jang-Yeon;Kil, Yeong-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.179-185
    • /
    • 2010
  • In ubiquitous society, there have been increasing demands on safety and security issues with infrastructures and services based on wireless technology. In this paper, we first introduce our own developed technology Binary CDMA to meet those demands. Then we present a wireless A/V surveillance system based on the Binary CDMA technology. The implemented wireless A/V surveillance system is composed of wireless terminals, wireless multiple channel processors, and an A/V management server, and the system gives a hint that the Binary CDMA technology can be adopted in practical ubiquitous systems to handle safety and security issues.

A Study on 2.4/5GHz Dual-Band RF Design Technology (2.4/5GHz 이중대역 RF 설계 기술에 대한 연구)

  • Byung-Ik Jung;Gyeong-Hyu Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.259-268
    • /
    • 2023
  • In this paper, it is said that the quality of wireless service has been improved by providing wireless service that can eventually overcome wired wires by using 2.4GHz band wireless access technology that supports 2.4/5GHz dual band. Increasing the maintenance cost incurred when building wireless CCTV, makes it possible to connect with existing CCTV, and study about expanding the service area of A/V surveillance system using CCTV.

A Class E Power Oscillator for 6.78-MHz Wireless Power Transfer System

  • Yang, Jong-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.220-225
    • /
    • 2018
  • A class E power oscillator is demonstrated for 6.78-MHz wireless power transfer system. The oscillator is designed with a class E power amplifier to use an LC feedback network with a high-Q inductor between the input and the output. Multiple capacitors are used to minimize the variation of the oscillation frequency by capacitance tolerance. The gate and drain bias voltages with opposite characteristics to make the frequency shift of the oscillator are connected in a resistance distribution circuit located at the output of the low drop-out regulator and supplied bias voltages for class E operation. The measured output of the class E power oscillator, realized using the co-simulation, shows 9.2 W transmitted power, 6.98 MHz frequency and 86.5% transmission efficiency at the condition with 20 V $V_{DS}$ and 2.4 V $V_{GS}$.

Development of the wireless data control system for wireless A/V LCD TV (무선 A/V LCD TV용 무선데이터 제어 시스템 설계 및 제작)

  • 김태선;홍영호;최덕규;박차훈;조재민
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2279-2282
    • /
    • 2003
  • This paper is research to control method between wireless LCD TV and Set-Top-Box. Audio and Video signal control of wireless LCD TV through Set-Top-Box, usually two systems fairly be away, there is weakness that must go to set-top-box for operation. In this paper design and manufacture to solve this weakness.

  • PDF

The Inductor Characteristics of the PFC Converter for Wireless Power Transfer Inverter (무선전력전송 인버터 전원용 PFC 컨버터의 인덕터 특성)

  • LIM, Seongjin;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.534-535
    • /
    • 2012
  • The characteristics of wireless power transfer is achieved at high frequencies in short range magnetic resonant wireless power transfer system. Use PFC pre-regulator for power supply of high frequency inverter. Supplied power to high power factor and high efficiency. Accordingly, the input voltage is 110V-220V. The designed of 175W Class with the output voltage of 385V. As a experiment result, maximum power factor and maximum efficiency measured 99% and 97% respectively. Therefore, in this paper, the design of a inductor which is the most important element in PFC converter for short range magnetic resonance wireless power transfer system was studied. Used an CS330125 core through the designed of 175W class. Examination results power loss was 0.2%.

  • PDF

Wireless Power Charging System Capable of Soft-Switching Operation Even in Wide Air Gaps (넓은 공극범위에서 소프트스위칭 동작하는 무선전력 충전시스템)

  • Yu-Jin, Moon;Jeong-Won, Woo;Eun-Soo, Kim;In-Gab, Hwang;Jong-Seob, Won;Sung-Soo, Kang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.515-525
    • /
    • 2022
  • The wireless power transfer (WPT) charging system for AGV depends highly on the coupling conditions due to air gap variation. To attain stable output power with high transfer efficiency under various coupling conditions, a single-stage, DC-DC converter that operates with robustness to changes in air gaps is proposed for the WPT system. The proposed converter is capable of soft switching under the set input voltage (Vin: 380 VDC), load conditions (0-1 kW), and air gap changes (30-70 mm). In addition, a wide output voltage range (Vo: 39-54 VDC) can be controlled by varying the link voltage due to the phase control at a fixed switching frequency. Experimental results are verified using a prototype of a 1 kW wireless power charging system.

An Analysis of Voltage Multiplier Circuits for Smart Phone RF Wireless Charging (스마트폰 RF 무선충전을 위한 전압 체배기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.29-33
    • /
    • 2021
  • A 5.8-GHz 1W wireless power transmission system was used for charging a smart phone. The voltage of one RF power receiver with antenna was not enough for charging. Several power receivers for charging a smart phone was connected serially. The voltage of several RF power receivers are highly enough for charging a smart phone within 50cm. However, the lack of current from small capacitances of RF-DC converters is not suitable for charging smart phone. It means very long charging time. In this paper, the voltage multiplier circuits for RF-DC converters were analyzed to increase the current and voltage at the same time to reduce the charging time in smartphone RF wireless charging. Through the analysis of multiplier circuits, the 7-stage parallel multiplier circuit with voltage-doubler units are suitable for charging the smartphone, which supplies 5V and 700mA at 3V@5.8GHz.

Improved Design Method of a EMI(Electro Magnetic Interference Noise for Wireless Video System in Vehicle (차량용 무선 비디오 시스템 내 EMI 노이즈 개선 방안)

  • Kang, Eun Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.277-284
    • /
    • 2012
  • In this paper, we analyzed various noise in the video stream system that have largely influence on EMI noise. We presented the remedy for these various noises and then designed the wireless video streaming system for a vehicle. To minimize EMI noise, we derived the improvement of noise characteristic from impedance matching, new design of the inner layer of the PCB line design and new design of high-speed data Interfaces. As a result, the final system showed 40[dBuV/m] and 47[dBuV/m] dB in the each regulation band.

Battery Charging System using Magnetic Induction (자기유도를 이용한 배터리 충전 시스템)

  • Lim, Ji-Hun;Han, Ki-Dong;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2239-2244
    • /
    • 2013
  • Industrial machines have constraints on movement due to its wire for power supply. Recently, the research on wireless power supply for industrial machine which is required to move freely is receiving a lot of attention. In this paper, we suggest a magnetic induction system which can charge a equipment's battery with wireless at a close range. The system was designed to operate at 13.56 MHz and a distance of 20~30 mm between the transmitting and the receiving power module. From experiment, it was found that it takes about 135 minutes for charging the battery with about 15 V using the proposed system.

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.