• Title/Summary/Keyword: Wireless

Search Result 16,258, Processing Time 0.048 seconds

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

Wireless Intrusion Prevention System based on Snort Wireless (Snort Wireless 기반의 무선 침입 방지 시스템)

  • Kim, A-Yong;Jeong, Dae-Jin;Park, Man-Seub;Kim, Jong-Moon;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.666-668
    • /
    • 2013
  • Wireless network environment is spreading due to the increase of using mobile devices, causing wireless network abuse. Network security and intrusion detection have been paid attention to wireless as well as wired existing and studied actively Snort-based intrusion detection system (Intrusion Detection System) is a proven open source system which is widely used for the detection of malicious activity in the existing wired network. Snort Wireless has been developed in order to enable the 802.11 wireless detection feature. In this paper, Snort Wireless Rule is analyzed. Based on the results of the analysis, present the traveling direction of future research.

  • PDF

Rapid-to-deploy reconfigurable wireless structural monitoring systems using extended-range wireless sensors

  • Kim, Junhee;Swartz, R. Andrew;Lynch, Jerome P.;Lee, Jong-Jae;Lee, Chang-Geun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.505-524
    • /
    • 2010
  • Wireless structural monitoring systems consist of networks of wireless sensors installed to record the loading environment and corresponding response of large-scale civil structures. Wireless monitoring systems are desirable because they eliminate the need for costly and labor intensive installation of coaxial wiring in a structure. However, another advantageous characteristic of wireless sensors is their installation modularity. For example, wireless sensors can be easily and rapidly removed and reinstalled in new locations on a structure if the need arises. In this study, the reconfiguration of a rapid-to-deploy wireless structural monitoring system is proposed for monitoring short- and medium-span highway bridges. Narada wireless sensor nodes using power amplified radios are adopted to achieve long communication ranges. A network of twenty Narada wireless sensors is installed on the Yeondae Bridge (Korea) to measure the global response of the bridge to controlled truck loadings. To attain acceleration measurements in a large number of locations on the bridge, the wireless monitoring system is installed three times, with each installation concentrating sensors in one localized area of the bridge. Analysis of measurement data after installation of the three monitoring system configurations leads to reliable estimation of the bridge modal properties, including mode shapes.

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

A Wireless TCP Protocol for Throughput Enhancement in Wireless Broadband (휴대 인터넷에서 처리율 향상을 위한 Wireless TCP 프로토콜)

  • Moon, Il-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.57-59
    • /
    • 2006
  • In this paper, we investigate the wireless TCP protocol for throughput improvement in wireless Broadband. If the burst error duration of a wireless link is significantly long, retransmissions of lost packets by Snoop TCP are fulfilled mainly not by the receipt of duplicate acknowledgement (DUPACKs) but by local timer expiration. With the proposed scheme, Snoop TCP recovers packet losses fast by shortening the interval of local retransmissions based on the channel status. From the simulation results, we can show that the proposed scheme can improve TCP throughput considerably.

  • PDF

Utility-based Resource Allocation with Bipartite Matching in OFDMA-based Wireless Systems

  • Zheng, Kan;Li, Wei;Liu, Fei;Xiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1913-1925
    • /
    • 2012
  • In order to efficiently utilize limited radio resources, resource allocation schemes in OFDMA-based wireless networks have gained intensive attention recently. Instead of improving the throughput performance, the utility is adopted as the metric for resource allocation, which provides reasonable methods to build up the relationship between user experience and various quality-of-service (QoS) metrics. After formulating the optimization problem by using a weighted bipartite graph, a modified bipartite matching method is proposed to find a suboptimal solution for the resource allocation problem in OFDMA-based wireless systems with feasible computational complexity. Finally, simulation results are presented to validate the effectiveness of the proposed method.

An Integrated QoS Support Architecture for Wireless Home Network Based on IEEE 802.11 Wireless LAN

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.227-234
    • /
    • 2007
  • In this paper, to support a QoS level appropriate to the user in Wireless Home Network based Wireless LAN, we propose a QoS support architecture which includes Wired Network and Wireless Network. Actually, an important problem to support QoS in Wireless Home Network is approached not only on a MAC level in Wireless LAN but also on a integrated method to combine Network layer with Datalink layer. By applying the integrated QoS support method, it is possible to provide QoS support architecture using a Wireless LAN terminal with a minimum changing, and the proposed scheme has advantage of QoS support method, which is more superior than a existing scheme to support QoS in MAC level of Wireless LAN. Simulations results show that overall performance of the proposed scheme can be improved.

  • PDF

28 GHz Wireless Backhaul Transceiver Characterization and Radio Link Budget

  • Leinonen, Marko E.;Destino, Giuseppe;Kursu, Olli;Sonkki, Marko;Parssinen, Aarno
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • Millimeter wave communication is one of the main disruptive technologies in upcoming 5G mobile networks. One of the first candidate applications, which will be commercially ready by 2020, is wireless backhaul links or wireless last mile communication. This paper provides an analysis of this use-case from radio engineering and implementation perspectives. Furthermore, preliminary experimental results are shown for a proof-of-concept wireless backhaul solution developed within the EU-KR 5GCHAMPION project, which will be showcased during the 2018 Winter Olympic Games in Korea. In this paper, we verify system level calculations and a theoretical link budget analysis with conductive and radiated over-the-air measurements. The results indicate that the implemented radio solution is able to achieve the target key performance indicator, namely, a 2.5 Gbps data rate on average, over a range of up to 200 m.