• Title/Summary/Keyword: Wire soldering

Search Result 28, Processing Time 0.033 seconds

A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods (납착 방법에 따른 교정용 와이어의 기계적 특성 비교)

  • Lee, Hye-Jin;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF WROUGHT WIRE CLASP (WROUGHT WIRE CLASP의 물리적 성질에 관한 실험적 연구)

  • Lee, Kwang-Hee;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.201-218
    • /
    • 1989
  • The purpose of this study was to evaluate the influence of attachment technique on mechanical properties and microstructures of wrought wires. The wires tested in this study were precious metal wires: PGP (Platinum-Gold -Palladium), Elastic #12, Denture Clasp, Standard, Jelenko No. 2, Degulor-Klammerdraht, DM (Dong Myung) and base metal wire : Ticonium. Each wire was divided into three groups, and each group was heat treated as embedding, cast to, and soldering state. Heat treated sample was evaluated by tensile test, bending test, microhardness test, element analysis and microstructure test. The obtained results were as follows: 1. In tensile test, cast to and soldering procedures have an effect on wrought wire clasp as hardening heat treatment. 2. Maximum bending strength was significantly increased in Elastic #12, Denture Clasp, Standard, and DM in cast to procedure. 3. Ticonium showed the highest Victors hardness number, followed by PGP, and there was no significant difference in other wrought wires. In cast to and soldering procedure, Victors hardness number was significantly increased in precious wrought wires. 4. The precious wrought wire showed typical fibrous structure and this was disappeared in cast to and soldering procedure. But physical properties were not influenced by this phenomenon.

  • PDF

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy (국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화)

  • Cho, Sung-Am;Ko, Hyun-Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

Characteristics of Cell Strings According to Wire Soldering Conditions for High Power Solar Module (고출력 태양광 모듈을 위한 와이어 솔더링 조건에 따른 셀 스트링 특성)

  • See Hee Hwang;Seung Ah Ur;Yo Han Noh;Jae Hyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.614-618
    • /
    • 2024
  • MBB (multi-busbar) technology is a module technology to achieve high power, and the use of a number of thin circular metal wires increases light-receiving capacity and reduces resistance. In the process of interconnection using a wire, the stress of the cell increases depending on the degree of coupling between the wire and the cell and the degree of damage caused by heat, or the mobility of current decreases due to poor bonding. The degree of such loss is affected by IR lamp, hot plate temperature and wire thickness. In addition, the values of contact resistance were compared and analyzed to analyze the cause of the decrease in electrical characteristics. In this study, process condition optimization was carried out through peeling test, SEM analysis, EL test, and pre/post bonding efficiency characteristic analysis of the bonded cell according to process conditions, compared the contact resistance.

Charateristics analysis of the joining of YBCO 2G HTS wire (YBCO 2G 선재간 접합 특성 연구)

  • Chang, Ki-Sung;Park, Dong-Keun;Yang, Seong-Eun;Ahn, Min-Cheol;Jo, Dae-Ho;Kim, Hyoun-Kyu;Lee, Hai-Gun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.741-742
    • /
    • 2006
  • This paper deals with an efficient superconducting joint method between 2G high superconducting(HTS) wire, YBCO coated conductor(CC). Recently CC is one of the most promising superconducting wire due to high n-value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter, persistent current system and cable etc. In most HTS applications, superconducting magnet is used, and it is necessary to joint between superconducting wire to fabricate superconducting magnet system. A CC tape used in this research consists of copper stabilizer, silver layer, YBCO layer, buffer and substrate. Direct joint using soldering method was inefficient due to resistance of copper, then copper lamination is removed by chemical etching method to reduce resistance between CC tapes. Jointed tapes were fabricated and tested. Transport current through jointed area and induced voltage were measured to characterize the I-V curve. Resistance between CC wire using chemical etching was compared with resistance of direct jointed tapes using soldering method in this paper.

  • PDF

Impact on the characteristics by heating temperature change during orthodontic wire solder (치과교정용 wire 납착시 가열온도의 변화가 제특성에 미치는 영향)

  • Lee, Gyu-Sun
    • Journal of Technologic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • Purpose : To understand the impact on the strength or restoration force by the change of heating temperature when soldering 18-8 stainless steel round wire which is the chrome-nickel class for dental orthodontic device production. Methods : The following conclusions were made upon the results from tensile strength test, 3 point bending test, and $90^{\circ}$ bending fatigue test with 24 samples that had been applied with condition 1 (before heat treatment - natural) and condition 2 (after heat treatment - mooring 30 seconds after heating up to $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$) to ${\phi}0.4mm$, ${\phi}0.7{\beta}mm$, 18-8 stainless steel round wire (spring hard) by Jinsung Company. Results : When it was heat-treated at $900^{\circ}C$, both ${\phi}0.4mm$ and ${\phi}0.7mm$ showed very low tensile strengths compared to the heat treated cases at $500^{\circ}C$ and $700^{\circ}C$ Yield strengths of both ${\phi}0.4mm$ and ${\phi}0.7mm$ showed very low compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$, as well. Upon the results of 3 point bending test, the heat treated case at $900^{\circ}C$ showed very low in both ${\phi}0.4mm$ and ${\phi}0.7mm$, compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$. Tensile strength of both ${\phi}0.4mm$ and ${\phi}0.7mm$ as well, showed very low compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$. Upon the results of $90^{\circ}$ bending fatigue test, the heat treated case at $900^{\circ}C$ showed the highest wave node resistance in both ${\phi}0.4mm$ and ${\phi}0.7mm$. Conclusion : This study concluded that heating temperature change during wire soldering impacts on the characteristics of orthodntic wire.

Fabrication and characterization of fault current limiting devices made of stabilizer-free coated conductors (Stabilizer-free 초전도 선재를 이용한 한류 소자 제작 및 특성 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seong-Duck;Kim, Hye-Rim;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.371-371
    • /
    • 2009
  • For the application of superconducting wires to fault current limiting devices, it is required that they have a high rated voltage when a fault occurs. Stabilizer-free coated conductors, particularly, shows a good performance for the high rated voltage, which is beyond 0.6 V/cm. In this study, using the stabilizer-free coated conductors, we made fault current limiting devices and examined their characteristics. Fault current limiting devices were fabricated with a shape of the cylinder of a mono-filar coil winding. Stabilizer-free coated conductors were wound along the mono-filar coil line and the terminal parts between the wire and metal were soldered using In solder. Two kinds of devices were fabricated by a different method in the terminal joint, one was made by a soldering and the other was made by a soldering-free joint. Critical currents and resistance at the joint parts were measured. In addition, long-time current flowing tests were also carried out for the characterization of the fault current limiting devices.

  • PDF

Fire Cause Analysis on Electric Pad Due to Defect of Hot Wires (전기장판 열선 결함에 의한 전기화재 원인분석)

  • Song, J.Y.;Sa, S.H.;Nam, J.W.;Kim, J.P.;Cho, Y.J.;Oh, B.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • This paper describes electrical fire on electric pad caused by defect of hot wires. We analyzed two type electric pad using by carbon type hot wire and magnetic shielded type hot wire. First, a carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. An electric pad using by a magnetic shielded type hot wire happened local heating on signal wire for sensing temperature-rise caused by applying current for magnetic shielded. With increasing local heating of signal wire, insulated coating of hot wire was melted. Finally the magnetic shielded type hot wire electric pad lead to electrical fire with breakdown between signal wire and hot wire. In this paper, we analyzed shape of damage in hot wire caused by electrical local heating and investigated fire cause on electric pad due to defect of hot wires.

Study for Inspection Method of Electronic Components Using 3-D X-ray Imaging Technology (3차원 X-ray 영상 기법을 이용한 전자부품 검사 기술 연구)

  • Sim, Hyeok-Hun;Park, Gi-Nam;Kim, Jong-Hyeong;Park, Hui-Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-161
    • /
    • 2007
  • There are technological changes to reduce the size and weight of electronic components and to accommodate multi-functions in them. To meet this trend, more complicated technological processes are required. To maintain the processes, more accurate inspection systems are also necessary. Therefore, new inspection methods are needed, which is differ from conventional inspection methods such as electrical test methods ICT(In-Circuit Test), FCT(Function Test) and visual test using optical equipments. One of the possible approaches is non-destructive test using X-ray. In this paper, an inspection method using X-ray is developed and applied to inspection of soldering state and internal defects of electronic components.