• Title/Summary/Keyword: Wire mesh

Search Result 220, Processing Time 0.024 seconds

Effectiveness of steel wire mesh as a strengthening material for masonry walls: A review

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.117-132
    • /
    • 2023
  • The most prevalent and oldest type of structure is unreinforced masonry (URM) structures; URM walls are still a widely used construction material in India and many other developing countries due to their simplicity, ease of construction, economic sustainability, and ability to be built with locally available materials. URM walls are significantly weak while carrying lateral loads. The poor performance of URM walls during earthquakes has necessitated investigating an effective method for strengthening a newly built masonry building or retrofitting an old structure. Wire mesh, being cost-effective and easily available, satisfies the requirements to strengthen new and old URM buildings. The use of wire mesh to strengthen and retrofit the URM structure is simple to use, quick to construct, and inexpensive, especially in developing nations where heavy machinery and highly qualified labour are lacking. The current paper reviews the effectiveness of steel wire mesh as a reinforcing material for enhancing masonry strength. The finding gave encouraging results for the field application of wire mesh.

Heat Transfer Augmenttaion by use of Wire Mesh-Screens in Impinging Water Jet (와이어 망을 이용한 충돌 수분류의 열전달 증진)

  • Yun, S.H.;Lee, J.S.;Choi, G.G.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.43-51
    • /
    • 1999
  • Axisymmetric circular water jet impinges against rectangular heated surface with uniform hear flux and wire-mesh screens are set up in the nozzle-to-heater space to augment heat transfer. In the free jet region to be used them, pressure drop and intensive turbulence flow was brought up. When water jet system is not used wire-mesh screens, maximum heat transfer appears in the stagnation point and the secondary maximum appears X/D=4 but it disappears when they are is used. In the low velocity(Vo<6.0m/s), coarse mesh-screen enhanced heat transfer but fine mesh-screens inpeded heat transfer. In the high velocity(Vo>6m/s), all of them enhanced heat transfer. Average Nusselt number of experimental system to be used wire-mesh screens was promoted $4{\sim}6$times than that of simple water jet system. The stagnation heat transfer of experimental system to be used wire-mesh screens was augmented 6times that of simple water jet system.

  • PDF

The Characteristics of Heat Transfer in a Channel with Wire-screen Baffles (와이어 스크린 배플이 설치된 채널에서의 열전달 특성)

  • Kim, W.C.;Ary, B.K.;Ahn, S.W.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • The heat transfer characteristics of flow through two inclined wire-mesh baffles in a rectangular channel were investigated experimentally with varying the mesh number of wire screens and inclination angle of the baffles. Two different types of wire meshes such as dutch and plain weaves, were used in this experiment. Three kinds of baffle plates with different mesh specifications in the dutch weave and four different kinds in the plain weave were manufactured. Baffles were mounted on bottom wall with varied angles of inclination. Reynolds number was varied from 23,000 to 57,000. It is found that the placement of inclined wire-mesh baffles in the channel affects the heat transfer characteristics by combining both jet impingement and flow disturbance. The wire screen modified the flow structure leading to a change in the heat transfer characteristics. The results show that the baffle plate with the most number of mesh (type SA) has the highest heat transfer rate.

  • PDF

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.

A Study on the Minimization of Dent Marks due to Mold Tooth Teeth Generated During Wave Forming of Stainless Steel Wire (STS 316Ti) (스테인리스 스틸 강선(STS 316Ti)의 웨이브 성형 시 발생되는 금형 치절에 의한 찍임 자국 최소화에 관한 연구)

  • Moon, Hyunchol;Bae, Soohan;Sung, Hyokyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.98-106
    • /
    • 2022
  • Among the parts assembled in the gas receiver of a marine engine, the titanium alloy stainless steel (STS 316Ti) wire mesh serving as a filter was broken, and the related part, the turbine fan of the turbocharger, was damaged. In this study, a sample of the grid wire mesh was collected and the cause of breakage was analyzed, and a method of minimizing the dent mark caused by the mold during wire forming, which is one of the most direct causes, was studied. In addition, the optimum mold shape was realized through FEM simulation, and the wire wave molding machine capable of controlling the speed was improved by supplementing the problems of the existing wire wave molding machine, thereby improving durability with minimal dent marks.

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure (Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구)

  • Jin, Sang-Mun;Beack, Suk-Min;Heo, Seong-Il;Yang, Yoo-Chang;Kim, Sae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.